STRUCTURE OF TURBULENT CHANNEL FLOW WITH SQUARE BARS ON
ONE WALL

S. Leonardi, P. Orlandi
Dipartimento di Meccanica e Aeronautica, University of Rome “La Sapienza”, 00184, Rome, ltaly

L. Djenidi & R. A. Antonia
Discipline of Mechanical Engineering, University of Newcastle, NSW 2308 Australia

ABSTRACT

The organised motion in a turbulent channel flow with
a succession of square bars on the bottom wall has been
investigated using direct numerical simulations. Four val-
ues (1,3,7,19) of the ratio w/k, where k is the bar height
and w is the longitudinal separation between consecutive
bars have been examined in detail. Relative to a smooth
surface, the streamwise extent of the near-wall structures
is decreased while their spanwise extent is increased. As
w/k increases, the coherence decreases in the streamwise di-
rection and increases in the spanwise direction. Reynolds
stresses and their anisotropy invariants show a closer ap-
proach to isotropy over the roigh wall than over a smooth
wall.

INTRODUCTION

Since the pioneering work of Kline et al. (1967), a wealth
of information is now available on the structure of a turbu-
lent boundary layer on a smooth wall (e.g. Cantwell 1981;
Robinson 1991). Much less is known on a turbulent bound-
ary layer over rough surfaces. In particular, the effect the
roughness has on the near-wall structure of the boundary
layer is far from complete. Arguably, this state of affairs
relates to the difficulties of carrying out reliable measure-
ments in the vicinity of the roughness. Further, the number
of parameters that affect the flow, (for example the den-
sity, height, shape of the roughness as well as its nature,
e.g. 2D or 3D) compounds these difficulties. Despite these
problems, useful results have emerged from experimental
studies of boundary layers over rough walls. Several pre-
vious studies have considered how the low-speed streaks are
influenced by roughness. The flow visualizations of Grass et
al.(1967) over a rough wall made up of spheres indicated
that the distance between the streaks increased, whereas
their streamwise coherence was reduced relative to a smooth
wall. Consistently, Krogstad and Antonia (1994) found that
two-point correlations over a mesh roughness indicated a
decrease in streamwise correlation with a slight increase in
the spanwise extent of the structures. Different features are
observed over a particular (so-called “d-type”) rough wall
made of square bars attached to the wall transversely to the
flow,the streamwise distance between consecutive bars being
equal to the bar height (e.g. Perry et al. 1969; Wood and
Antonia 1975; Djenidi et al. 1999). For a d-type roughness,
the latter authors found low and high-speed streaks alternat-
ing in the spanwise direction with approximately the same
normalised spacing as over a flat wall.

A systematic study of the changes caused by varying w/k
has yet to be attempted in experiments. Here, we address

this in some detail, by analysing numerical results obtained
at four values of w/k. In particular, we consider two-point
velocity correlations, with the fixed point at several locations
within one roughness wavelength. We also consider the ef-
fect w/k has on the way the cavity communicates with the
overlying flow. The departure from isotropy of the Reynolds
stress tensor is also examined in the context of its anisotropy
invariants.

NUMERICAL PROCEDURE

The non-dimensional Navier-Stokes and continuity equa-
tions for incompressible flows are:
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where Re = (Uch/v) is the Reynolds number, h is the
channel half-width, U, is the centreline velocity, v is the
kinematic viscosity, II is the pressure gradient required to
maintain a constant flow rate, U; is the component of the
velocity vector in the ¢ direction and P is the pressure. The
Navier-Stokes equations have been discretized in an orthog-
onal coordinate system using the staggered central second-
order finite-difference approximation. Here, only the main
features are recalled since details of the numerical method
can be found in Orlandi (2000). The discretized system is
advanced in time using a fractional-step method with viscous
terms treated implicitly and convective terms explicitly. The
large sparse matrix resulting from the implicit terms is in-
verted by an approximate factorisation technique. At each
time step, the momentum equations are advanced with the
pressure at the previous step, yielding an intermediate non-
solenoidal velocity field. A scalar quantity ® projects the
non-solenoidal field onto a solenoidal one. A hybrid low-
storage third-order Runge-Kutta scheme is used to advance
the equations in time. The roughness is treated by the ef-
ficient immersed boundary technique described in detail by
Fadlun et al. (2000). This approach allows the solution of
flows over complex geometries without the need of computa-
tionally intensive body-fitted grids. It consists of imposing
U; = 0 on the body surface which does not necessarily co-
incide with the grid. Another condition is required to avoid
that the geometry is described in a stepwise way. Fadlun et
al. (2000) showed that second-order accuracy is achieved by
evaluating the velocities at the closest point to the boundary
using a linear interpolation. This is consistent with the pres-
ence of a linear mean velocity profile very near the boundary
even for turbulent flows, albeit at the expense of clustering
more points near the body.
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Figure 1: Mean streamlines, averaged with respect to time
and z, for different w/k. The thick line corresponds to
the zero streamfunction. positive streamfunction,
—--—— negative {primary recirculation zone). The defini-
tions of k,w,do,¥, ¥, Ta,Zp, Tc and X are indicated. Flow is
left to right.

FLOW CONFIGURATION

Direct numerical simulations have been performed for a
fully developed turbulent channel flow with square bars on
the bottom wall. Four values (1,3,7,19) of w/k within of
the larger database (0.33, 0.6, 1, 2.07, 3, 4, 5.5, 7, 8, 9, 10,
19) carried out by the authors (see Leonardi 2002), have
been investigated in more detail, with particular emphasis
on the correlations. Periodic boundary conditions apply in
the streamwise (z) and spanwise (z) directions respectively,
and a no slip condition at the wall. The computational box is
8hx2h x4h in z, y (wall-normal direction) and z respectively
(figure 1), the roughness height is k = 0.2h.

The Reynolds number is Re = 4200 and corresponds to
ht = 180 when both walls are smooth. The superscript
“4” denotes normalisation by either U, (= (v/p)/?), 7 is
the wall shear stress equal to the sum of the skin frictional
drag and form drag) or v/U;. The flow rate has been kept
constant in all simulations, hence U, k™ and AT depend on
w/k. Three different grids have been used for all the simu-
lations, 200 x 140 x 97, 400 x 140 x 97 and 300 x 140 x 97.
The first two are non-uniform in y while the third is non-
uniform in z and y. In the normal direction, the points
are clustered near the wall (within the cavity Aylmin/h is
0.005). The mesh increases up t0 Aylmaz/h = 0.03 at the
channel centreline. In z, points are clustered near the rough-
ness elements. Results obtained with the 300 x 140 x 97 and
400 x 140 x 97 grids are virtually identical. Only results
obtained with the latter grid are given here.

For w/k = 3(with k = .2h), the dependence on the
Reynolds number and distance between the walls has been
investigated. In particular, we compared the velocity pro-
files in wall units for two configurations, with the channel
width equal to 2h and and 2.2h respectively. The velocity
profile is obtained by averaging in z, z and time; to deter-
mine the origin for y, we followed the approach of Jackson
(1981) who determined d, to be the centroid of the moment
of forces acting on the elements:

Ut =1/kln(y —do)™ +C — AU . 2

The velocity profiles (fig.2 0 and o ) near the rough wall are
essentially identical, implying that the precise location of
the upper wall is not important. The present results agree
with those from Hanjalic & Launder’s (1972)experiments at

00

Figure 2: Velocity profiles in wall units, averaged in
time and spanwise direction. Kim & Moin (1987),
——w/k=1, wik=7,---- w/k=19. w/k =3,
Re = 4200 o large channel, o narrow channel, ——=— Re =
6000 large channel.

higher Reynolds numbers (between 10.000 and 50.000), i.e.
the mean velocity and turbulent intensities, scaled on wall
units, do not depend on the roughness on the lower rough
wall.

The dependence on the Reynolds number was also in-
vestigated by comparing two cases (w/k = 3) with the
same k+ and different Reynolds numbers (Re = 4200 and
Re = 6000). For the latter, the number of points in z was
increased to 193. Fig. 2 shows that the mean velocity profile
in the log-region, and hence the roughness function AUT,
do not depend on the Reynolds number but on kT only. The
flow is therefore in the so-called fully turbulent regime and
the present results should be applicable to higher Reynolds
numbers. This is consistent with the conclusion of Bandy-
opadhyay (1987), in the context of this particular surface
geometry, that the flow is fully turbulent if k1 > 20. In the
present simulations, kT ranges from about 40 for w/k =1 to
about 90 for w/k = 7. In figure 2 are also shown the velocity
profiles for w/k = 1,3,19. By increasing w/k the roughness
function AU increases and is maximum at w/k = 7. For
w/k > 7 it decreases and for very large value of w/k AUT
it is expected to tend to zero. This is in agreement with the
experiments by Furuya et al. (1976) for rods roughness.

MEAN FLOW

Mean streamlines, averaged with respect to time and z
are shown in figure 1. For w/k < 3, a separation occurs at
the trailing edge of the element (point A) and reattachment
is on the opposite vertical wall (CD). The cavity is occupied
by a large recirculation zone with two secondary vortices,
of opposite direction to the main recirculatory zone, in the
corners (D) and (B). The streamlines above the roughness
exhibit a weak undulation. For w/k > 7, the flow reattaches
on the bottom wall (point E) at about 5k downstream of
the back face of the element (BE =~ 5k). The near-wall
streamlines are essentially horizontal over the region EG,
where GD ~ 1.5k. As the next element is approached, the
streamlines are tilted upward and separation occurs. This is
in close agreement with the flow visualisations of Liu, Kline
& Johnston (1966). For 3 < w/k < 7, the flow structure
is intermediate to the previous two. Once w/k exceeds a
“critical” value (~ 7), the flow remains virtually unchanged
around a roughness element. The only noticeable difference

—124—



in the patterns between w/k = 7 and 10 is the length of the
re_gign where the streamlines are parallel to the bottom wall
(EG). The size and strength of the recirculation zones do
not change for w/k > 7.

Details of the present simulations such as the pressure
and friction on the wall, and the Clauser roughness func-
tion may be found in Leonardi 2002. The simulations also
focused on the variations of the viscous drag (D,) and the
form drag (Dp) on the ratio w/k. It was observed that,
as w/k increased, Dp increased, reaching a maximum for
w/k = 8. On the other hand, D, decreased to a minimum
value for w/k & 6. Such a behaviour implies that important
structural changes occur as w/k varies.

STREAKS AND TWO-POINT CORRELATIONS

Figure 3: Contour plots of u/u’, where a prime denotes an
rms ( ) positive, (---+---- ) negative. {a) Flat channel,
(b) w/k =1 (c) w/k =3, (d) w/k = 7. Increment .5

The turbulent boundary layer over a flat wall is char-
acterised by elongated streaks which lift up in a pseudo-
random manner before breaking down. To assess the effect
of the roughness, we compare instantaneous fluctuations of
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Figure 4: Two-point correlations in the (x,z)-plane puw(Xo),
yT = 5. Contour from .3 to 1 (increment is 0.1). Left,

(w/k = 1); centre (w/k = 3); right, (w/k =7). (———= ),
T =g (e )y & = xp; (—-— ), ¢ = . Flow is left to
right.

the streamwise velocity (u/vw'), (where a prime denotes an
rms) in horizontal planes (x-z), at y/h = .03 (for a flat
channel, at this Reynolds number this distance would cor-
respond to yt ~ 6). As the velocity fluctuations vary with
respect to w/k, to maintain the same increment in all the
figures, u was divided by its 7ms value at that y. Elongated
structures are found above (fig. 3b) the rough wall with
square cavities. These resemble those over the smooth wall
(fig.3a) and those revealed in the visualisations of Djenidi et
al. (1999) for the same surface.

By increasing w/k (figs. 3c,d) fluctuations increase in
magnitude. This is due to the increased momentum ex-
change with the outer layer, as previously observed from
a quadrant analysis (Krogstad & Antonia 1992). The width
of the structures in z is larger than in the smooth wall case.
Very close to the plane of the crest (not shown here), the wall
geometry splits the elongated structures into nearly circu-
lar regions located above the grooves. The no-slip condition
(u = 0) on the crests reduces the coherence in the streamwise
direction and produces du/d8z. Moreover within the cavity,
near the leading edge of the element, du/0z < 0. Continu-
ity requires u/dz to be balanced by dv/dy and dw/dz (v
and w are the fluctuations of normal and spanwise velocity
respectively), thus leading to an enhancement of v and w
near the rough wall.

To quantify the previous observations, two-point correla-
tions, with one point fixed, were computed. Figure 4 shows
puu(To) = ul{zo)ulz) /(v (@o)u' (z)) for w/k = 1,3,7 in hori-
zontal planes (x, 2). For reference, the smooth wall contours
are included at the top of the figure. A prime denotes an
rms value, Xg = Zo, Yo, 20, are the coordinates of the fixed
point, x = xg + Ax is the position of the other point, the
overbar indicates averaging with respect to the number of
fields and wavelength (i.e. T = th’z u(z + nA),t, 2)) Re-
sults were obtained at the same y of the previous figures for 3
different xg: on the crest (zq, ——== ), at the centre of the
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Figure 5: Two-point correlations in the (x,y)-plane
puu(%0,0), y* = 6. Contour from .3 to 1 (increment is
0.1). (top) upper wall (smooth) of the channel, (bottom)
w/k=1.

cavity (zp, === ), and slightly upstream of a roughness
element (z., —-— ) (see fig. 1). A decreased streamwise
coherence, relative to the smooth wall case, is observed for
all the rough surfaces. However, even if at w/k = 1 contours
are considerably less elongated than over the smooth wall,
the coherence in z is larger with respect the other surfaces
investigated. However it could be surprising that a so small
disturbance as square grooves may reduce the streamwise
extent of the correlation contours of a factor 2.

This can be explained by analysing pu, in side sections
(x,y). Although the contours remain almost as elongated
as over the smooth wall, there is little doubt that their
inclination has increased, underlying the increased commu-
nication between the cavities and the overlying flow (fig. 5).
The increased inclination is also consistent with the reduced
streamwise correlation over this surface in figure 4.

By increasing w/k, the spanwise extent of the struc-
tures increases and the streamwise length decreases. For
w/k = 1, 3 there is only a weak dependence on the loca-
tion of zg, whereas for w/k = 7, the correlation contours are
less elongated near or over the roughness element crest than
within the cavity.

" The decreased coherence in the streamwise direction is
due to normal wall motion induced by the roughness. To
show how the velocity field is perturbed by the square
bars on the bottom wall, instantaneous isosurfaces of wy
(= 8u/0z — dw/dz) were computed (fig. 6). For w/k = 1,
the contours are parallel to the plane of the crests and very
similar to those over a flat wall although shorter. For this
geometrical configuration, the influence of the rough surface
on the overlying flow is small and in fact this is the case for
which AU™ is smallest and the streamwise correlation of
is most similar to that on a flat wall. While for w/k = 1 pos-
itive and negative contours alternate regularly in z as over
a flat wall, for w/k = 7 the vorticity field is more complex.
The fluctuations of v and w, due to the "splashing” effect
occurring near the leading edge of an element, lift the struc-
tures upward and increase their width in z. Upstream the
element, a negative (dark) contour of wy almost normal to
the wall can be observed.

The correlation in the spanwise direction, Ry, (r,y) =
uw(z,y, z2)u(w,y, 2 + r,t) further corroborate the loss of alter-
nating structures of positive and negative sign for w/k = 7
(fig.7). While for w/k = 1, Ry has a minimum at about
2zt = 50, similar to the smooth wall case, for larger val-
ues of w/k, Ry . gradually decreases in z without a defined
minimum. The extent of the correlation in z increases by
increasing w/k and has a maximum for w/k = 7.

To quantify the outward motion due to the roughness,
the correlation (pvy(x0)) = (v{zo)v(z))/ (¥ (z0)v' (z)) was
computed. Angular brackets indicate averaging with respect
to z, the number of fields and wavelength. Figure 11 shows
{pvo(xo)) for w/k = 1,3,7,19 in vertical planes (z,y) com-
pared with the smooth wall.

For a flat wall, the contours of py, are elongated in z. In

Figure 6: Contours of instantaneous wy. Top: w/k = 1,
bottom: w/k = 7 Flow is right to left. Dark wy = —4, light
wy = 4.

fact the streaks gradually lift-up, oscillate and finally break
down, so that there is a relatively wide region in z over
which the normal velocity is correlated. The case w/k =1
is similar to the smooth wall even if the contours are less
elongated. Hence, as for the u contours, there is quite a
close similarity between the flat wall and a rough wall with
w/k = 1. By increasing w/k, the contours depart from those
over a flat surface, and for z = xp and z = z. the correlation
in y is even larger than in z. In particular, near the leading
edge, the correlation in y is largest, and we expect that this
is the region where the flow is more likely to be ejected out
of the cavity (this is further corroborated by a quadrant
analysis not shown here, see Leonardi 2002). No significant
differences are observed at ¢ = z4,z¢ for w/k = 19 and
w/k = 7. For w/k > 7, the elements can be considered as
Yisolated’. As for w/k > 7, separation occurs over the crests
(Leonardi 2002), the correlation contours (at & = ) closely
resembling the recirculation region over the crest.

TURBULENT INTENSITIES AND ANISOTROPY INVARI-
ANTS
The intensity of the outflows near the rough wall can be

assessed by comparing the present rms distributions with
those of Kim et al. (1987) (fig.9). Here, only the portion
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Figure 7: Two-point correlation coefficients at yT ~ 10 in
spanwise direction. Symbols as in fig.2.
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Two-point correlations in the (x,y)-plane
(pvu(x0)), §+ = 6. Contour levels range from .3 to 1 (in-
crement is 0.1). Top, flat wall ( ). (=== ),z =xq4;
(GRS )s & =zp; (—-—), z = 2. Flow is left to right.

w/k=7

Figure 8:

above the plane of the crest is shown, and averaging was also
performed over z. Near the wall, (u+2) is largely reduced
despite an increase in (u2). As expected, (v+2) is larger than
over a flat wall, with the maximum very close to y = 0. A
corresponding increase is found in (w+2>. As noted earlier,
v and w are enhanced near the rough wall, as a result of
continuity.

For w/k = 3 and y/h > 45, (u*?) and (w+?) closely
overlap those obtained by Kim et al. (1987) while <v+2)
is larger than that over a flat wall up to y/h = .8. Hence,
for this particular configuration, the influence of the rough
surface is confined up to about 4 roughness heights.

For w/k =7, both (u*?) and (v+2) remain bigger than
those by Kim et al. for a large layer above the wall. In fact
(v+2) coincides with the value of Kim et al. only at y/h=1.
(5 roughness heights above the wall) and <u+2) present a

08 b/

(vt?)

0.6 +

0.4 - h

0 L L n " i

0 02 0.4 0.6 0.8 1 1.2
y/h
Figure 9: Turbulent intensities averaged in time z and z.
Kim et al. (1987) -=~~=- w/k =3, ------- w/k =17,
----w/k=19.

different (smaller) slope and overlap the curve relative to
the flat channel at y/h = 1.4 (7 roughness heights above the
wall).

For w/k = 3,7,19, (v+?) and (w*?) coincide for y/h >
.4, and being (u+2> greater than the other two the turbu-
lence is the so called ‘cigar-shaped’ turbulence.

An estimate of the overall anisotropy is in the Reynolds
stress anisotropy tensor b;; = (u;u;)/(uiu;) — 8;;/3 (Lum-
ley 1978). Here, (u;u;) is twice the turbulent kinetic en-
ergy (TKE), (where ui,uz,us = wu,v,w), and repeated
index summation is implied. §&;; is the Kronecker delta
function. A convenient method for comparing the overall
anisotropy is given by the function F = 1 + 9II + 27III,
where II[= —b;jb;:/2] and II[= bi;jbjrbr;/3] are the second
and third invariants of the tensor b;;. The function F is
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Figure 10: Invariant F = 1 4 9II 4 27III for square bars
roughness: symbols as in figure 2

a measure of the approach to either two—component turbu-
lence (F' = 0) or a three—component isotropic state (F = 1).
In a flat channel, isotropy is quite poor near the walls, due
to the organisation associated with the quasi-longitudinal
structures, and best at the centreline. As the three stresses
do not coincide, F is smaller than 1. Figure 10 shows that
near the roughness and within the cavities, the isotropy is
definitely increased, and the maximum is shifted beyond the
centreline. For large values of w/k, a region of constant F
extends over about 3k. A comparison of F at the same y for
y > 3k could lead to the conclusion expressed by Mazouz et
al. (1998)(and in disagreement with what is generally found
in the literature)that roughness increases the anisotropy. At
the centreline of w/k = 7, the difference between (u+2) and
(v+?), (w*?) is larger than for a smooth channel. This is
due to the upward shift produced by the roughness, and not
to a genuine decrease in isotropy, the peak having about the
same intensity and occurring at about y/k = .5. The case
w/k = 1 is, as expected from the previous figures, closest to
the flat wall.

CONCLUSIONS

The present direct numerical simulations indicate that
structures near a rough wall are less elongated than over
a smooth wall. By increasing w/k, the coherence in x is
reduced while it is increased in 2. The changes in the struc-
tures may be related to the strength of outward ejections
of fluid from the cavities;this strength reaches its maximum
for w/k = 7. The increased intensity of the wall-normal ve-
locity fluctuations is coupled to an increased strength in the
spanwise velocity fluctuations, which is difficult to measure
reliably in experiments. On the other hand, the streamwise
velocity fluctuation is not very different to that on a smooth
wall. Hence isotropy, close to the wall, is better approxi-
mated over a rough than a smooth wall. The dependence on
w/k is very strong; for very small values of w/k, structures
and turbulent intensities resemble those over a flat wall. For
w/k = 3, the effect of the wall extends up to about 2k above
the plane of the crests, while for w/k = 7, the distance is as
large as 5k. The ratio w/k = 7 is that for which with the
roughness function AU is largest(Leonardi 2002).
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