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ABSTRACT

This paper describes recent experiments conducted
at the University of New Brunswick in which
uniformly sheared turbulence was subjected to plane
mean flow curvature not coincident with the plane of
the shear. One of the results was a swirling mean
motion that caused the uniform shear to rotate about
the tunnel centerline. In the first portion of the flow,
the swirl was weak and the turbulence was subjected
to plane curvature perpendicular to the plane of the
shear. In the second portion, the swirl was well
developed and the mean shear had been rotated by
30° towards the plane of the curvature.
Measurements of all components of the mean
velocity, Reynolds stress, and streamwise integral
length scales are reported.

1 - INTRODUCTION

Flow curvature has been shown to play an important
role in determining the structure of turbulent shear
flows that occur with pumps, turbines, airplanes and
automobiles. These flow curvatures are often
complex and have a three-dimensional form.
However, most studies of curvature have been
concerned with the two-dimensional streamwise
curvature, where the shear and curvature lie in the
same plane. These flows are relatively simple to
construct in the laboratory and have important
practical applications. Measurement of these flows
has shown that sheared turbulence is very sensitive
to streamwise curvature; stabilizing it when the shear
is directed away from the center of curvature, and
destabilizing it when the shear is directed towards
the center of curvature. The present experiment
addresses the problem of three-dimensional
curvature, albeit in a simple form. It examines the
effects of subjecting a uniform turbulent shear flow
to plane curvature that is initially perpendicular to
the plane of the mean shear. A schematic of this
arrangement is depicted in Figure 1 where the mean

velocity profile shown corresponds to that at the
entrance of the curved wind tunnel and the s
coordinate corresponds to the wind tunnel centerline.
The development of this shear flow is strongly
affected by the streamwise component of mean
vorticity that develops as a result of the curvature.
This swirling motion rotates the mean shear about
the streamwise direction so that the flow tends to a
case of two-dimensional streamwise curvature. In
the present experiment the shear is rotated towards
the positive n direction by up to 30° and the
turbulence growth rate is diminished.
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Figure 1: A curved uniform shear flow where the
shear and curvature lie in different planes. The shear
shown coincides with the mean conditions at the
entrance of the curved tunnel. The velocity
components in the s, n ,z directions are u,v,w.

2 - APPARATUS

The experimental facility used in this study was an
open-return wind-tunnel with a shear generator, a 5
m X 0.55 m X 0.55 m straight section, and a curved
test section which turned the flow by 60° (Roach
2001). The straight section allowed for the
development of the sheared turbulence to a self-
preserving state (Karnik and Tavoularis, 1987)
before it was guided tangentially into the curved

* Present address: Department of Engineering, University of New Brunswick, P.O. Box 5050, Saint John, N.B.,

E2L 4L5



tunnel. The flow had a centerline speed of
approximately 9.5 m/s, a shear rate of 21 s and a
centerline radius of 3 m. The corners of the curved
tunnel were filleted and some suction was applied to
the low speed side to aid in the maintenance of the
flow. Measurements were performed using standard
hot-wire anemometry and a computer controlled
positioning system. Velocity data was acquired at 4
cm intervals along the centerline of the tunnel and at
nine planes perpendicular to the streamwise
direction in the curved section. The integral
lengthscales were calculated from temporal
autocorrelations using Taylor’s frozen flow
hypothesis and integration to the first zero crossing.
From the measurements conducted it was found that
the turbulence was approximately homogeneous
within the core of the tunnel over planes
perpendicular to the streamwise direction. The
development of turbulence structure under the
influence of curvature was revealed by
measurements taken along the tunnel centerline.

3 - MEAN FLOW

For the configuration shown in Figure 1, the shear
flow at the start of the curved tunnel will develop
into a swirling curved shear flow. The mechanism
through which this occurs is described in detail by
the analysis of Roach and Holloway (2000) and
Roach (2001). The results of their inviscid analysis
show that the components of the vorticity for this
flow, expressed in the curvilinear coordinate system
of figure 1, are given by

§, = [Cn.|sin(a) )

gz = anz,o COS(G,) (2)
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where a is the angle between the projection of the
vorticity vector on the n-z plane and the n direction.
It can be calculated from

aloz__(L
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Equations (1) and (2) reveal that the projection of the
vorticity vector on the n-z plane remains constant
since

¢, +¢, =

®
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This implies that the swirling flow remains a shear
flow if viewed in the correct rotating frame.

The measured streamwise development of the
mean vorticity components is shown in Figure 2.
The vorticity is in the negative n direction when the
flow enters the curved tunnel because the shear is in
the (s,z) plane. As predicted by equations (1)-(4), the
imposition of curvature generates s which, in turn,
causes rotation of the total vorticity vector about the
streamwise axis. Furthermore, as , increases in
magnitude, £, begins to fall in such a way that (5) is
nearly satisfied.
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Figure 2: Streamwise development of the vorticity
(@, (A, C,:®). Solid lines are fit through the
data. The sum ¢, 24 sz = constant.

Figure 3 shows contours of the streamwise mean
velocity and projections of the mean velocity vector
on the n-z plane for measurement station 8. It is
clear that a swirling motion has developed and that
the gradient of mean velocity has been rotated by
approximately 30° about the streamwise axis of the
tunnel.
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Figures 3: Mean flow at station 8. Speed contours
are in m/s. The flow region shown includes only the
central core of the tunnel (in cm) and excludes the
tunnel boundary layers.



4 - TURBULENCE

4.1 - Effects on the Kinetic Energy and
Length Scales
The measured streamwise development of twice the
turbulence kinetic energy per unit mass, defined as
q2=u2+vz+w2 ©6)
is shown in Figure 4. Near the end of the straight
section this quantity can be seen to grow nearly
exponentially as described by Karnik and Tavoularis
(1987). From the point where the curvature was

applied, the rate of growth is decreased until ?

reached a maximum at s = 175 cm and then

decreased for s > 225 cm.
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Figure 4: Streamwise development of q_2 (®) and
L(O) (Normalized with the respective value at s = 0)

The reduction of kinetic energy growth rate in this
flow, despite the presence of the mean shear,
suggests the curvature has a stabilizing effect. An
explanation of this behavior based on the production
of turbulence is provided in the discussion.

In order to determine the effects of the curvature on
the streamwise integral lengthscales, an average
lengthscale, which is invariant to rotation, can be

calculated similar to ? It is given by

(M
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The measured streamwise development of this
quantity is shown in Figure 4. Near the end of the
straight section L grows nearly exponentially and
continues to grow with nearly the same slope
through most of the curved tunnel. After s=150 cm
the rate of growth of L increases, contrary to the

measured behavior ? It seems that the turbulence
is losing energy but increasing in scale.

4.2 - Effects on the Reynolds Stresses

The degree to which the structure of the turbulence
is affected by curvature was evaluated using the
Reynolds stress anisotropy tensor defined as
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Near the end of the straight tunnel section, before the
application of curvature, m has the values

0.25 0.00 0.13
m = [0.00 -0.08 0.00 )
0.13 0.00 -0.17

Equation (9) is slightly more anisotropic than those
measured by Holloway and Tavoularis, (1992) for
uncurved, uniform shear flow.

The streamwise development of the components of
the stress anisotropy tensor are shown in Figure 5.
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Figure 5: Streamwise development of the
dimensionless turbulence stress anisotropy (m,,:®,

m,:O,m 8 m :00, m A m, A)

Prior to s = 150 cm, m,, gradually increases, m,,,
decreases, and m,, remains nearly constant. (Note



that by definition m,, +m,, + my, = 0) As the
strength of the swirl increases towards the end of the
tunnel, m,, begins to fall more quickly which is
balanced by a rise in m,, while m,, remains
unaffected.

For the shear stresses, m,, shows a gradual increase
immediately after the imposition of curvature. This
trend is then reversed, however, as the swirling
motion begins to develop. The dominant turbulence
shear stress, m,,, decreases slowly and steadily for
the first two-thirds of the curved tunnel. Once the
streamwise vorticity increases and the shear begins
to rotate more rapidly the change accelerates. The
third turbulence shear stress, m,,, also shows a slight
decrease at the entrance to the curved section. Then,
as the streamwise vorticity increases, the changes to
m,, become more pronounced and it becomes
increasingly negative. Further explanation for the
development of the shear stresses will be covered in
the discussion.

The coordinate system used to describe the results
remains tangent to the centreline of the tunnel as it
moves along the curve but does not rotate with the
mean shear. To detemine the extent to which the
choice of coordinates influences the changes in the
anisotropy the second invariant of the anisotropy
tensor, I, as given by Lumley and Newman (1977)
has been considered

2 2 2
II=m, +m, +m,, 10
2 2 2
+2m," +2m," +2m,,

The streamwise variation of II can be seen in Figure
6.
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Figure 6: Streamwise development of the second
invariant of the Reynolds stress anisotropy tensor.

This figure shows that the stress anisotropy increases
gradually over the first two-thirds of the curved
section of the tunnel. In the last third of the tunnel,
the anisotropy experiences increases more rapidly.
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4.3 - Effects on the Integral Lengthscales

To investigate the behavior of the streamwise
integral lengthscales, techniques similar to those
used for the analysis of the turbulence stresses will
be employed. The lengthscale anisotropy tensor is
defined as

0 uv L"W
L L
Lvu va - Luu / 2 va
n = —_— (1Y)
L L L
qu L_wv wa — Luu/ 2
L L L

Near the end of the straight tunnel section, before the
start of curvature, n was measured to be n is

0 0 1.12
n= 0 -0.04 0 (12)
1.12 0 -0.13

Here only nyy, ngw, nu, D, and n,, have been
computed. The development of these five
components of the tensor can be seen in Figure 7.

Note that because the magnitudes of uv and vw are
small and in some cases they change sign, large
errors in n,, and n,, can result. Where this is the
case, the data has been removed from the figure.
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Figure 7: Streamwise development of the
dimensionless integral lengthscale anisotropy (n,,:O,

n, W n 0O, n ;A n :A)

Figure 7 shows that as the flow develops, the n,, and
nyy components are initially unaffected by the
application of out-of-plane curvature. The n,,
component does eventually begin to decrease and
crosses the ny,, data , which is also decreasing.

At the entrance to the curved section, ny,, is 1.12 and
remains relatively constant for the first two thirds of



the curved section. As the rotation of the shear
becomes more significant, n,, begins to decrease.
Comparing Figure 7 with Figure 5, it is found that
the points where m,, and n,, begin to fall nearly
coincide.

DISCUSSION
The production of the turbulence kinetic energy in a
swirling curved shear flow can be reduced to

P =23, d, (13)
where
5, = 02, — uve, — uwe,  (14)
and

From equation (12) it can be seen that the production
due to shear will be maximized when the turbulence

stress 5‘, and the shear strain-rate dT vectors are

perfectly aligned. To examine the variation of the
angle between these two vectors, the stress and
strain-rate unit vectors at each of the measurement
planes in the tunnel have been shown in Figure 8.
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Figure 8: Mean shear strain-rate (solid) and
turbulence shaer stress (hollow) unit vectors shown
at different stations in the windtunnel.
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CONCLUSION

Initially, the turbulence stress and shear strain-rate
vectors are aligned as is the case for rectilinear shear
flow. When curvature is applied, the shear strain-
rate vector tilts upward due to the extra strain (see
equation 15). The shear strain-rate vector then
remains relatively unaffected up to station 4 where
the swirl has developed sufficiently to cause it to
rotate about the streamwise axis. This rotation
continues throughout the remainder of the tunnel.
The trend for the development of turbulence shear
stress follows that of the shear strain-rate vector very
closely with the notable exception that G_ lags the

development of the shear strain-rate vector. This lag
causes a decrease in the production. Not evident in
the figure is the fact that the magnitude of the
turbulence shear stress vector is decreasing which
causes a further decrease in the production.

The flow exhibited two distinct regions of behavior.
In the first of these, which existed from s = O up to
approximately s = 100 cm, the flow was mainly
subjected to out-of-plane curvature without
appreciable swirl. In this region it was found that
there was little response from the anisotropy of the
turbulence stresses and integral lengthscales though
there was some mild development of the out-of-
plane components of the stress and integral
lengthscale anisotropies. The growth rate of the
energy was diminished in this region below the
value found in the straight section of the tunnel. In
the second region, the swirl was well developed and
caused significant rotation of the mean shear. The

growth rate of ? was reduced to zero and rate of

growth L was increased. Furthermore, the
dimensionless stress and lengthscale anisotropies
showed much more rapid variation than in the first
part of the tunnel though the observed effects lagged
the development of the mean shear. It would seem
the out of plane curvature without swirl has a
relatively weak effect on the turbulence structure.
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