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ABSTRACT

A three-equation model of the turbulent transport
of momentum and heat for simulating a circulation
structure over the heat island in a stably stratified
environment under nearly calm conditions is formu-
lated. Turbulent fluxes of momentum —<uu; >
and heat —<u,0> are determined from
E—£-< 6% > turbulence model minimizes diffi-
culties in simulating the turbulent transport in a
stably stratified environment and reduces efforts
needed for the numerical implementation of the
model. Numerical simulation of the turbulent struc-
ture of the penetrative convection over the heat is-
land under conditions of stably stratified atmosphere
demonstrates that the three-equation model is able to
predict the circulation induced by the heat island,
temperature distribution, root-mean-square fluctua-
tions of the turbulent velocity and temperature fields,
and spectral turbulent kinetic energy flux that are in
good agreement with the experimental data and re-
sults of LES.

INTRODUCTION

Turbulence closure models are often used as tools
to analyze and predict atmospheric boundary layer
characteristics. During the last 20 years numerous
articles dealing with various types of flows using
different models have been presented. For stratified
atmospheric flows the most frequently used models
are E—¢& models (Duynkerke, 1988), second-order
closure models (Zeman and Lumley, 1979) and
third-order closure models (Andre et al., 1978;
Canuto et al., 1994). Together with large eddy mod-
els (e. g., F.T.M. Nieuwstadt et al., 1993) third-order
closure models (Andre et al., 1978) should be con-
sidered as fundamental research tools because of
their large computer demands. A growing need for
detailed simulations of turbulent structures of stably
stratified flows motivates the development and veri-
fication of computationally less expensive closure
models for applied research that should be kept as
simple as possible in order to reduce computational
demands to a minimum. The ideas underlying the
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algebraic models represent an improvement in buoy-
ant flow modeling and could be used for applied
modeling since a full second-order closure model is
presently much too demanding. Indeed, the recent
studies (Andren, 1991; Sommer and So, 1995) of the
stable stratified flows indicate that a model with a
transport approximation including buoyancy effects
might be the optimal way that combines both com-
putational efficiency and predictive capability. The
algebraic modeling techniques of previous studies
could be modified to obtain an algebraic heat-flux
model for buoyant flows. In order to avoid using the
symbolic algebra software for inverting a system of
algebraic equations for the turbulent heat fluxes
—<u,0> and turbulent momentum fluxes
—<uu; > it is desirable to derive an explicit al-
gebraic heat-flux model here the heat fluxes are ex-
pressed explicitly in terms of the mean gradients and
the eddy diffusivities. It should be pointed out that
the use in higher-order closure studies of the & -
equation is now quite standard (Canuto et al., 1994;
Ilyushin & Kurbatskii, 1996). Results of computa-
tional modeling and simulation of the atmospheric
boundary layer (Andren, 1991; Ilyshin & Kurbatskii,
1996) showed the importance of retaining the full
prognostic equation for the temperature variance,
allowing a counter-gradient of heat in the upper half
of the turbulent layer.

The present paper proposes and evaluates a turbu-
lent closure scheme that has been implemented in
order to make the model more useful for stable
stratified flows and air pollution applications.

In this study the E—&—< 8% > model is applied.

In the model the eddy-exchange coefficients are
evaluated from the turbulent kinetic energy (TKE)

E and the viscous dissipation &. The turbulent
fluxes — <u,60 > and — <u,u; > are calculated

from fully explicit algebraic models for the penetra-
tive turbulent convection from an area heat source
(the urban heat island) with no initial momentum
under calm and stably stratified environment. The
performance of the three-equation model was tested
by comparing the computed results with the labora-



tory measurements of the low-aspect-ratio plume
(Lu et al.,, 1997) and the LES data (redrawn from
Canuto et al., 1994). Good agreements were found.

THE HEAT ISLAND MATHEMATICAL
MODEL

A simple theoretical model of the nocturnal urban
heat island cannot be applied to the case of near
calm conditions when the ambient wind speed ap-
proaches zero, because in low-aspect-ratio plumes

(z;/ D <<1, where z; is the mixing height and

D is the heat island diameter) the basic assumptions
of classical plume theory are violated ( Lu et al.,
1997).

In most mathematical models the thermal plume
turbulence is parameterized (cf. Byun and Araya
1990). However, to analyze and understand the tur-
bulent structure of the urban-heat-island phenome-
non and its associated circulation, the turbulence
modeling is required.

The penetrative turbulent convection is induced by

the constant heat flux /|, from the surface of a
plate with diameter D (Figure 1). It simulates a
prototype of an urban heat island with the low-
aspect-ratio plume ( z; / D <<1) under near calm

conditions and stably stratified atmosphere. The flow
is assumed to be axisymmetric. In the experiment the

mixing height, z;, is defined as a height where the

maximum negative difference between the tempera-
ture in the center of the plume and the ambient tem-

perature Ta is achieved as shown in Figure 1, and

z; includes the interface layer in the upper part of

the plume.

Analysis of the experimental data (Lu et al., 1997)
leads to the following choice of the characteristic
(radial)

scale for the horizontal

Wp =(BgDH, /PCP)1/3a

velocity:
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Figure la. Schematic diagram of the heat-island cir-
culation including horizontal velocity distribution
and vertical density profiles (z; — mixing height,
p, — density of the reference atmosphere, p, —
plume centerline density).

AR
F—Heat Island —— _
Figure 1b. Shadowgraph picture of the heat island.
At t =240 sec the full circulation is established.

B=—(1/p)x (Op/0T)p is the thermal expan-
sion coefficient, p— mean density, Cp— specific
heat at constant pressure. For the heat island with a

low-aspect-ratio of the vertical linear scale to the

horizontal linear scale [ the continuity equation
yields that the characteristic vertical linear scale is of

the order (z-Fr), and the characteristic scale for
the vertical velocity has the value (WpFr),

where Fr =W, /(N -D) is the Froude number,

N= [ﬂg(aT/ 0z) a]l/z is the Brunt-Vaisala fre-

quency. (W, - N)/(g) is taken to be the charac-
teristic temperature scale, and D/Wp is the time
scale.

Governing equations

Fundamental fluid dynamics equations describ-
ing the circulation over the low-aspect-ration heat
island can be written in the hydrostatic approxima-
tion (Pielke, 1984). In the absence of the Coriolis
force and radiation, the governing equations in non-
dimensional form for mean values of velocity and
temperature in Boussinesq approximation are,

H
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In equations (1) -(3) ¥ is the mean horizontal veloc-
ity, W — mean vertical velocity, v— horizontal tur-
bulent velocity fluctuation, w— vertical turbulent
velocity fluctuation, # — azimuthal turbulent veloc-
ity fluctuation, 7 — mean temperature, & — turbulent
temperature fluctuation, Re = (W,D)/v - Rey-

nolds number, Pr =v/k— Prandtl number, k-
thermal diffusivity coefficient, v — kinematic viscos-
ity, H — given height of the stratified layer. In (1) -
(3) and everywhere in the following discussion capi-
tal letters and brackets <...> define mean values of
variables, and lower-case letters are reserved for tur-
bulent fluctuations.

Fully explicit models of turbulent fluxes

A physically correct description of the effect of
stable stratification on the circulation over the heat
island can be obtained by using a three-equation tur-
bulence transport model. The TKE, its dissipation &
and the dispersion of turbulent fluctuations of tem-

perature < 0? >are found from the differential
transport equations, and the turbulent fluxes of mo-

mentum — <#,u; > and heat — <u,6 > are de-

termined from fully explicit algebraic “gradient dif-
fusion” equations. This three-equation turbulence
model minimizes difficulties in describing turbu-
lence in stable stratified flow and reduces efforts
required for its numerical implementation.

The explicit algebraic model for the turbulent heat

flux vector — < u,H >can be derived from exact

transport equations (Kurbatskii, 1988; Sommer and
So, 1995) in the approximation of equilibrium turbu-

lence
AT T
-<u,0 >=—9—{[<uiuj >_3£+
16 Ox;
axj

+(1-Cy)g: <6’ >} 4

where 7=E/¢, 75 =< 0% >/ 2¢, are charac-
teristic time scales,
Eg =2k <060/0x;-00/0x; > is the destruc-
tion of temperature fluctuations. C\4,C,y are con-
stant coefficients, their values are given below.

The expression (4) constitutes a linear system of

algebraic equations for <u,6 >. This expression
turns out to be implicit for flux — < ;0 > because
<u 10 > is included into the right-hand side of (4).

The easiest way to obtain a fully explicit model for
— <u,0 > is to use the gradient transport model for
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the fluxes —<u;u; > and —<uj(9> in the
right-hand-side of (4):

—<wuu; >=2vrS;; —(2/3)ES; )

—<uj9>=kT(8T/8xj) (6)
where S :(1/2)(6U,./8xj +an/axi) is
the mean strain tensor, vV =C #E 2 / & - turbulent

viscosity, k; = Cp+/2RE 2 / £~ turbulent thermal
diffusivity, R =7, /7 ratio of the characteristic

scales of temperature( 7 ) and dynamic (7 ) turbu-

lent fields. Coefficients in (4) — (6) have "standard"
values calibrated by modeling the homogeneous tur-
bulence in stable stratified flows (e.g. Sommer and

$0,1995):C, =0.09, Cyp=2.32, C, =04,

C, =0.095.

Substitution of (5) and (6) into (4) gives the fully
explicit algebraic model for the turbulent heat flux
vector:

2
—<ui0>=CT§— 2Ra—T—

£ ox;
JRE
————[{2vr +(1-Cy) kr}S;;+
Cp €

+(1=Cyp)krQ,;1(0T /1 0x ;) +

+[(1-Cyy)/Cyp] (El6)-VRg,B <67 > (7)
where Q. =(1/2)(0U,/0x; —0U ;/0x;) is

the mean rotational tensor, R = 0.6.

For normal turbulent stresses in the right-side of
(1) the present work adopts a simple Boussinesq
model that preserves certain anisotropy of the nor-
mal stresses,

<v? >=(2/3)E-2v;(8V/0r) (8)
<w?>=(2/3)E-2v,(dW /8z)  (9)
<u*>=2/3)E-2v;(V/r) (10)

For the shear stress the Boussinesq model (5) yields:
—<w>=(2/3)E-

—2v, (0V/0z+0W /or) (11)

Substitution of (8) — (11) into (1) leads to the close
form of the equation for the mean radial velocity V.
The vertical mean velocity W is then found as a
quadrature from the continuity equation (2). Results



of the modeling discussed below in Section 4 show
that the proposed fully explicit algebraic model for
turbulent fluxes of momentum and heat (5) — (7)
provides quite acceptable predictions of the structure
of such a complex phenomenon as the heat island in
stratified environment.

Quantities E, & and <6 > in the three-
equation model are found from the differential equa-
tions of turbulent transport. Equations for £ and &
in non-dimensional form are,
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where P = \/T[Fr'_z(aV/az)2 +
+ Fr YoV /o8z) (oW | or)]-
—(2/3)E(0V /0or+0W [0z) is the TKE pro-

duction due to shear, G =< w@ > — TKE produc-
tion due to the buoyancy force fluctuation, o5 and

0, —turbulent Prandtl numbers (0 ;=1.0 ,

o, =1.3) . Function ¥ is written in the form,
Y=Y, +¥, b, q>(0U,/0x;)/ e+
+¥,8 g, <0u; >/e+

+W;8g, <Ou; >/eq*(0U,/0x;)/ e (14)

In (14) by =<wuu, >/q*> -6;/3, ¢* =2E and
coefficients ‘¥, ‘¥, ,'¥,,'¥; have “standard” val-

ues (e.g. Andren, 1991) calibrated by solving differ-
ent atmospheric boundary layer problems:

Y, =3.8; ¥, =2.4; ¥,=-24; ¥, =03.
Equation for the dispersion of turbulent tempera-

ture fluctuations < @2 > is written in the following
close form,
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Boundary conditions

The problem of the development and evolution of
circulation above the heat island is assumed to be
axisymmetric. The domain of integration is a cylin-

der of a given height H . The heated plate with di-

ameter D is located at the center of the cylinder
bottom (Figure 1). The outer boundary is located at

the distance R =1.5D from the cylinder axis. At

the initial moment the medium is at rest and it is
stably stratified. Conditions

V=(0E/or)=(0e/0r)=(0T/0r)=
=0<6*>/0r=0
are prescribed at the plume axis (7 =0) and at its
outer boundary (7 = R).

At the top boundary (z = H ) the zero-flux condi-
tion is enforced,

oV /0z=0E/0z=0¢e/0z =
=0<0%>/0z=0.
Boundary condition for the temperature at the top

boundary is written so that the vertical temperature
gradient is the same at two last mesh points,

0T /02),.,, =(0T/0z)

For the horizontal mean velocity on the underlying
surface the no-slip condition is specified,

V‘ ,=0 =0. The surface heat source on the bottom

boundary (z=0) has the sizc 0<r/D<0.5. 1t
prescribes non-homogeneous boundary conditions

for E,&,T and <0% >
Values of £ and ¢ for 0<r/D<0.5 at the
first mesh point (Z = z; ) are taken to be (Panofsky

etal. 1977), E, =u?[{7+0.52(z,/ L)}*"* +
+0.85{1+3(z,/L)}*"],
g = (s /xz)){1+0.5(z,/ L)*Y"%; us is

friction velocity on the underlying surface evaluated

z=z, "



from the experimental data (Lu et al., 1997), its
value was s /W, = 0.045 . The value

L=ul/ (xBgHy/ pc,) is the Obukhov-Monin

scale (x = 0.40 — Karman constant).
Outside the surface heat source

(0.5<r/D<R/D) values of E and & at the

first mesh point are chosen according to (Andre et
al., 1978) as,

E =C."%ul, & =i /k)(Fr'z;' +4/L).

For 0.5<r/D<R/D temperature is taken to
be equal to the surface temperature, 1|, o =T, .
On the surface of the source 0<7/D<0.5 the
heat flux H, is prescribed.

Boundary condition for the dissipation <0*>
0<r/D<0.5 at the first mesh point
(z=2z) is obtained from the equation (15)
approximated as locally balanced (“production ~
dissipation”) and from the equation (7) for the

turbulent fluxes: < 62 > =

for

2
[(H,/ pe,)BgDIWE RV 27
- CTEI
- H.BgD?
(14 2R (1~ Cy)A(CroCren[ 1P ED )
cpWp

For 0.5<r/D<R/D a background value of
dispersion (at z =z,) is specified as a function of
the  dispersion at  the heated

<6?0,r/D>0.5)>=
=102 <6%(0,0<r/D<0.5)>,.

DISCUSSION OF RESULTS
AND CONCLUDING REMARKS
Figure 2 shows streamlines for positive values of
the streamfunction (#/D <0- counterclock-wise
circulation), and for negative values of the stream-
function (#/ D > 0 — clockwise circulation).
Streamlines in Figure 2a (experiment) and Figure
2b (computation) are similar. They show the main
upflow in the center generated by two vortices that

plate,

reaches the interface layer ( z/ z; oc1 ), and down-

flow in the outer region.

Common feature for both experiment and compu-
tation is the suppression of the plume height by the
stable stratification, the increase in the sideway flow
and turbulence of the plume. The flow above the
vortex pair (Figure 2b) can be explained by local
circulation over the real-life heat island. In this situa-
tion the heat is not transported from the urban sur-
face into the upper atmosphere, instead it is accumu-
lated in local circulations.
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Figure 2. Streamline contours for Fr =0.077,
Re = 8280 . a) — experimental data (Lu et al., 1997).
Solid lines: counterclockwise motion. Dashed lines:
clockwise motion. b) — simulation results.
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Figure 3. Nondimensional variances of velocity on
z/z, at center above the heat island. The laboratory
data (Lu et al., 1997: Fr=0.077; Re=8280): A —
horizontal velocity profile, [1— vertical velocity pro-
file. The computation data: A — horizontal velocity
variance, M — vertical velocity variance; ® — com-
puted intensity of turbulence, ¢* =<u’ >.

The turbulent plume structure is shown in Figure 3
as distribution of root-mean-square fluctuations of
vertical and horizontal turbulent velocities as func-

tions of z/ z; at the plume center. It should be men-

tioned that the simple gradient model (8) and (9) not
only correctly predicts characteristic features of



o,/Wpand o,, /W , distributions, but also satis-
factorily reflects their anisotropic nature.
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Figure 4. Turbulent kinetic energy dissipation &
normalized by W,D ™' as a function of z/z,. W —
computation (at7/ D =0.225) ; O — Moeng and Wyn-
gaard’s LES.

Figure 4 shows comparisons of the vertical profile
of the TKE dissipation, &, computed by the three-
equation model with LES data of Moeng and Wyn-
gaard (redrawn from Canuto et al., 1994).
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Figure 5. Computed mean temperature profile at
various locations at ¢ =8 min ( Re = 4500,

Fr=0.088), A — the initial profile.

Figure 5 show that temperature profiles inside
the plume have characteristic “swelling”: the tem-
perature inside the plume is lower than the tempera-
ture outside at the same height creating an area of
negative buoyancy due to the overshooting of the
plume at the center. The height of the overshoot is
maximum at the plume center and it decreases away
from the center. The temperature anomaly at the
plume center extends to a higher height than at the

cross-section #/ D = (0.20. This behavior of the

vertical temperature distribution indicates that the
plume has a dome-shaped upper part in the form of a
“hat” schematically shown in Figure la and also in
figure 1b (the shadowgraph of Lu et al., 1997).
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