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ABSTRACT

Using two dimensional direct numerical sim-
ulations, the statistics of the temperature fluc-
tuations in stably stratified turbulence are
studied. Comparison with passive scalar statis-
tics in similar flows suggest that the stably
stratified case is qualitatively similar to the
passive case. A stratification-dependent mix-
ing length is shown to be the dominant factor
in determining rare event temperature statis-
tics. Probability density functions at various
stratification strengths collapse to the same
functional form as in the passive case when
rescaled using this length scale.

INTRODUCTION

The mixing of a passive scalar field in tur-
bulent flows has been studied in great detail
(Warhaft, 2000). Recent work has suggested
that large-scale anisotropies in the flow persist
down to the smallest scales, and this has indi-
cated a new kind of universality in the scalar
statistics of rare events (Celani, et. al., 2000).
It is of great interest to understand if these
ideas extend to the case of an active scalar
field. Stably stratified turbulence is a prime ex-
ample of an active scalar field, with the scalar
coupled to the fluid flow via buoyancy. It has
relevance to many geophysical and astrophys-
ical fluids. In these flows, a stable density
gradient is imposed on a fluid, which is then
stirred to generate turbulence. The density
gradient is often the result of an applied tem-
perature gradient, since in most fluids density
is proportional to the temperature. The pres-
ence of a gravitational acceleration along the
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direction of this applied gradient dynamically
couples the temperature field to the momen-
tum equation of the fluid. In the absence of
gravity this scenario reduces to the passive
scalar case, while increasing the magnitude of
the gravitational acceleration strengthens the
coupling to the dynamics. This coupling in-
fluences the large scale motions, determining a
mixing length which apparently controls a va-
riety of rare event statistics.

Using two-dimensional numerical simula-
tions, we find evidence that the universality of
the passive scalar rare event statistics found by
Celani, et. al., (2000) extends to these stably
stratified flows. In the passive case, the prob-
ability density functions (PDFs) of the rare
event statistics of temperature differences at
various separations collapse when rescaled by
a power of the separation. We find that this
also occurs in the stably stratified case. In
addition, we find that a single stratification-
dependent length scale can be used to collapse
the rare event statistics at different stratifica-
tion strengths as well as different separations.
This same length scale also permits the col-
lapse of the PDFs of the temperature values
and temperature gradients.

Problem Description

To examine the statistics of the tempera-
ture field in stably stratified turbulence, we
utilize two dimensional simulations analogous
to those employed in Celani, et. al. (2000), and
Boffetta, et. al. (2000), for the passive scalar
case. Following the procedures for the numer-
ical simulation of the two-dimensional incom-
pressible Navier-Stokes equations described in



Boffetta, et. al. (2000), we define the velocity
field using the stream function %(x,t), from
which the horizontal velocity component v =
0,% and the vertical component w = —09,%
are derived. In addition, we have a tempera-
ture field T'(x,t) which evolves with the flow
and couples to the fluid density via the buoy-
ancy term in the momentum equation. In the
Boussinesq limit, the two-dimensional Navier-
Stokes equations are expressed in terms of the
vorticity w(x,t) = V29 and ¢ as

Ow+J = v, V™0 — Mo — V2 f — gad, T, (1)

where J = 0,¥0,w — 0;9%0,w is the usual
Jacobian, f is a forcing function which adds
energy to the flow at small scales, Aw is a
friction term which dissipates energy at large
scales, g is the gravitational acceleration, and
o is the volume expansion coefficient of the
fluid. The temperature is passive if the cou-
pling ga is zero. The forcing function f
is a small scale random source with ampli-
tude f, which generates velocity fluctuations
with a characteristic wavenumber k;. The
friction term (Aw) dissipates energy at some
characteristic wavenumber ky4, which scales as
ky ~ kff()_s/4()\/kf)3/2 in the passive scalar
case. This friction term is equivalent to
one proposed by Paret and Tabeling (1997)
to parametrize the large-scale dissipation in
their magnetically driven two-dimensional tur-
bulence experiments. A linear friction term
also arises in two-dimensional magnetohydro-
dynamic turbulence (Biskamp and Schwarz,
1997), in which case X represents a particle col-
lision frequency. As in Boffetta, et. al. (2000),
the usual Laplacian term for the viscous dissi-
pation is replaced by an eighth order (n = 4)
hyperviscosity, adjusted so as to be negligible
except on scales smaller than the forcing scale.
The use of hyperviscosity is a standard numer-
ical practice and should have no consequences
in this work since our attention is focused on
length scales larger than the energy injection
scale.

The temperature field is advected according
to the usual equation:

OT + i -VT = kV>T. (2)

An average temperature gradient g, aligned
with the gravitational acceleration is imposed
by means of jump-periodic boundary condi-
tions. The velocity boundary conditions are
periodic.

The numerical resolution for all the results
in this paper is 2048 by 2048 and the statistics
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are collected over at least 10 turnover times in
each of our simulations. For the passive case
the friction coefficient A is chosen so that the
dissipation scale A is approximately 1/10th of
the box size. For non-zero ga, the dissipation
scale decreases from its passive scalar value.
We completed two sets of simulations with dif-
ferent forcing scales; one with £y ~ 35 and one
with kf ~ 200. Each set yielded similar con-
clusions; for brevity we only present graphical
results from the k¢ ~ 200 simulations.

Parameters

We now briefly discuss three parameters
which characterize stably stratified flow in two
and three dimensions: (1) Re: Three di-
mensional turbulence is characterized by its
Reynolds number: Re = UpA/v, where A is
the length scale of the stirring, Up is a typ-
ical velocity magnitude for motions of size A,
and v is the viscosity. Unlike three-dimensional
turbulent flows, we stir the two-dimensional
flow at large wavenumber (kf) and the friction
term dissipates energy at a smaller wavenum-
ber k4. The dissipation wavenumber k; deter-
mines the ‘integral scale’ A = 27 /k, in the two-
dimensional inverse cascade spectrum. Thus in
our flow the ratio of these scales (ks /kq)*/® de-
termines the inertial range and characterizes
the strength of the turbulence; it is therefore
analogous to the three-dimensional Reynolds
number. (2) Ri: In stably stratified turbulent
shear flow, the influence of the stratification on
the dynamics is characterized by the Richard-
son number, Ri = gag,A?/U2, which gives
the ratio of potential to kinetic energy on the
lengthscale A. The same definition can be ap-
plied to our two-dimensional simulations, with
A being the energy dissipation scale and the
integral scale velocity being Up = /(u? + w?).
Because the energy input occurs at the small
scales in our simulations, it is also useful to
define a forcing-scale Richardson number, Riy,
given by Rif = gag,/fok%. It indicates the ra-
tio of potential to kinetic energy on the forcing
scale k;l. In our work, Riy is an input param-
eter defining the dimensionless stratification
strength while Ri must be computed from the
observed dissipation scale quantities A and U,.
(8) Pr: The ratio of the viscous dissipation
scale to the thermal dissipation scale in three
dimensions is determined by the Prandtl num-
ber, Pr = v/k. In our simulations, k;l plays
the role of the viscous dissipation scale, and the
molecular diffusivity « is chosen so that tem-
perature dissipation occurs at a larger length-



Rif-10° Ri  (ks/kg)*/? (62) Up  A(Rig)
0 0 102.2 0.13 3.54 1.01
0.633 2.74 85.1 0.13 3.51 0.88
6.33 25.7 51.0 0.097 3.27 0.60
31.7 53.7 23.6 0.033 2.85 0.34
63.3 73.9 15.2 0.025 2.63 0.24
76.0 84.4 13.4 0.022 2.53 0.22

Table 1: Quantities for k;y ~ 200 simulations.

scale than k;l. This corresponds to Pr < 1.
The ratio of these length scales was not varied.
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Figure 1: The kinetic energy spectra for the six stratification
strengths listed in Table I. The peak value decreases as Riy

increases. The inset shows the spectra compensated by k° /3

to demonstrate the range of the inverse cascade, from ky =
200 to kd(Rif).

RESULTS

The dimensionless control parameter in our
simulations is the forcing-scale Richardson
number Rif. As Riy is increased, the integral-
scale Richardson number Ri also increases
while the integral scale A decreases. The ef-
fective Reynolds number (ks/kq)*/® also de-
creases, as does the integral scale velocity mag-
nitude Uy. The precise values for the six sim-
ulations presented here (all with k; ~ 200) are
sumarized in Table I.

In the absence of gravity, the simulations
produce two dimensional turbulence as inves-
tigated in Boffetta, et. al. (2000). The
two-dimensional inverse kinetic energy cascade
results in a k~5/3 power spectrum within an
‘inertial range’ bounded by the large dissipa-
tion scale k7' and the small forcing scale k;l.
Figure 1 shows kinetic energy spectra for the
simulations listed in Table I. As the stratifi-
cation strength Riy increases, the dissipation
scale decreases and the inertial range shortens;
the spectrum with the largest dissipation scale
(kg ~ 10) corresponds to Riy = 0. One can see
that the spectra are nearly identical at small
scales and display the £~5/2 power law in their
respective inertial ranges. Scales much below
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the integral scale do not appear to be influ-
enced by changes in the stratification strength.
The principal dynamical effect of the stratifica-
tion is therefore summarized by the decrease in
the integral scale A = 27/k; as Riy increases.
While a precise determination of k4 from the
spectra is not possible, our estimates of the
lower bound of the k~%/2 scaling range in Fig-
ure 1 are consistent with

ARy = —20 )

1+ 2000Ri;
The exponent 2/3 is a good approximation to
the scaling of the integral scale, but is not a
precise fit because the estimate of kg is impre-
cise. However, with this integral scale it is pos-
sible to collapse the temperature statistics for
various Riy to the same functional form for rare
events. In our simulations A(Riy) varies by a
factor of approximately four. The dynamical
impact of the stratification in the largest Rif
simulation is therefore quite significant com-
pared to the passive scalar case.

The simplest statistical quantity examined
in passive scalar flow is the fluctuation of the
temperature from the mean gradient, defined
as (x) = T(x) — 8o-x. It has been ob-
served that the probability distribution func-
tion p(#) exhibits exponential tails, i.e., p(6) ~
exp(—|0|/g,A) for |8] > g,A, in both grid tur-
bulence (Gollub, et. al., 1991, and Jayesh and
Warhaft, 1991) and pipe flow (Guilkey, et. al.,
1997) experiments. A simple argument for
exponential tails goes as follows: Since gen-
eration of fluctuations |f] > g,A requires the
transport of fluid elements over many integral
scales, and since fluid motions are incoherent
on these length scales, fluid elements essen-
tially undergo a random walk. The probability
of taking a large number of sequential steps
in the same direction is multiplicative, and
this multiplication of independent probabilities
yields the exponential PDF. Since the charac-
teristic step size is the largest mixing length,
one expects the PDFs to collapse when nor-
malized by g,A(Rif). Figure 2 demonstrates
this collapse for several values of Riy, using
equation 3 for A. The shape of the PDFs is
rounded at the core and suggests exponential
tails for |0| > 2¢g,A(Riy). However, regardless
of the precise form of the tails, the collapse
when normalized by g,A(Riy) is clear.

The statistical quantity most commonly
studied in passive scalar flow is the two-point
temperature difference, defined as 66(r) =
f(x +r) — 6(x). The PDF of 60 quantifies the
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Figure 2: The PDFs of §/goA(Riy) for the six stratification
strengths listed in Table I. The inset shows the uncollapsed
PDF's of 6 for the nonzero stratificationstrengths: the widest
PDF (solid line) is for Ri = 2.74; the narrowest PDF (long-
dashed line) is for Ri = 84.4.
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Figure 3: Collapse of the tails of the PDFs of temperature
differences at various separations rky in the passive scalar
case (Riy = 0). The separations are (from top to bottom)
rky = 30, 61, and 92. The rescaling exponent is ( = 1.3.
likelihood of observing a ‘jump’ in the temper-
ature of 46 between two points separated by a
distance r. While less is known experimentally
about the full PDF of §6, its moments (known
as structure functions, Sy, (r) = (662"(r)) for
moment 2n) have been observed to scale with
the separation r with exponents (s, which are
nonlinear functions of n (Antonia, et. al., 1984,
and Mydlarski and Warhaft, 1998). Based on
two-dimensional simulations similar to ours, it
was suggested by Celani, et. al., (2000) that
these exponents are due to an underlying PDF
of the form

p(86(r)) ~ r*Q(68/90A) (4)

where Q(66/g,A) is some universal function.
This form implies the saturation of the expo-
nents (2, to a constant in the limit n — oo.
Using a simple stochastic mixing model, it
was suggested by Wunsch (1998) that Q(z) ~
exp(—|z|), and this model also led to the col-
lapse of the exponents to a constant at large n.
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Figure 4: Collapse of the tails of the PDFs of temperature
differences at various separations rky for the case Ri = 53.7.
The separations are (from top to bottom) rk¢ = 30, 61, and
92. The re-scaling exponent is { = 1.3.

In this model, the largest mixing length deter-
mined the statistics of large |66| events accord-
ing to the random walk argument given above,
which applies to 66 as well as @ if the likelihood
of a large difference is roughly equivalent to the
likelihood of a large fluctuation at one of the
two points. In this case, Q(z) is independent
of r. Consequently, if the large mixing length
does control the statistics of large |66|, one
would expect the universal form of equation 4
to apply to the stably stratified case. Figure 3
shows this universal form for the passive scalar
case (Riy = 0) by rescaling the PDFs for differ-
ent separations r, while Figure 4 demonstrates
that it applies equally well for stable stratifica-
tion (Ri = 54 in this case). Note that the cores
do not overlap; the universal form applies only
to the rare events. The shape suggests expo-
nential tails for Q(66/g,A). The exponent ( is
approximately 1.3 for all Riy. The saturation
of the structure function scaling exponents in-
ferred from this collapse in the passive scalar
case also extends to our stably stratified tur-
bulence simulations.

Figure 5 shows how the tails of the PDFs
of 60 from simulations with different Ris col-
lapse to the same form when normalized by the
mixing length A(Rif). Again, the cores of the
PDFs do not collapse but the tails reduce to
a common, plausibly exponential, form. While
the tails do not perfectly overlap, comparison
with the inset reveals that most of the stratifi-
cation dependence is accounted for by normal-
izing by the mixing length A(Ris). Taken to-
gether, Figures 3-5 demonstrate that the tails
of the PDFs can be reduced to the same form
for all inertial range separations r and all strat-
ification strengths Ri;. The dominance of the
largest mixing length in determining the statis-
tics of large temperature differences is the ap-



parent reason for the universal form.
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Figure 5: Collapse of the tails of the PDFs of §6 for the five
nonzero stratification strengths Riy at the same separation
rky = 15. The cores become more rounded as Ri; increases.
The inset shows the uncollapsed PDFs of §¢, demonstrating
the narrowing of the PDF's as Riy increases.
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Figure 6: Collapse of the tails of the PDFs of the horizon-
tal scalar gradient 6z /goA for the five nonzero stratification
strengths Rif. The inset shows the collapse the vertical
scalar gradient, 6, /goA.

In the limit of zero separation (r — 0),
temperature differences reduce to temperature
gradients. PDF's of temperature gradients, 0,6
and 0,60, have been observed to have exponen-
tial tails in stably stratified grid turbulence
experiments (Thoroddsen and Atta, 1992).
Again, we normalize our temperature gradi-
ent PDFs using the stratification-dependent
lengthscale A(Rif) and observe that the tails
collapse to the same exponential form. Figure
6 shows the collapse of the PDFs of 0,6/g,A
for various stratification strengths.

CONCLUSIONS

The simulations presented here suggest that
a variety of rare event statistics (temperature
fluctuations, differences, and gradients) in sta-
bly stratified turbulence can be understood in
terms of a single large mixing length in the
flow. The stratification plays a direct role in
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determining this mixing length, which is in-
ferred from the kinetic energy spectrum. Since
the largest mixing length is the dominant fac-
tor in determining the likelihood of rare events,
these statistics are identical to those of a pas-
sive scalar with the same mixing length. The
universal form of the tails of the PDFs of
temperature differences in the inertial range
suggested by Celani, et. al., (2000) therefore
extends to stably stratified flows. As in the
passive scalar case, the influence of the large
scales is felt down to the dissipative range.
Additionally, the rare event statistics of tem-
perature fluctuations and gradients at various
stratification strengths also exhibit a univer-
sal form when normalized by the same mixing
length.

The precise dependence of the mixing length
on the stratification strength in these two-
dimensional simulations is not understood.
Naively, one would expect the Ozmidov scale,

kfA(Rif) ~ Ri;>*, (the lengthscale at which
the kinetic energy cascade balances the grav-

itational energy) to determine the mixing

length. The approximate A(Rif) ~ Ri;2/3

scaling observed here may be due to interac-
tions with the large scale dissipation, which de-
termines A(0) and still plays a significant role
in the energy dissipation even at the largest
Ri; we simulated. Consequently, this specific
scaling of A(Riy) may not by asymptotic and
may not apply to three dimensional turbulent
flows. However, the argument that the strat-
ification influences only the large scales, and
that a single stratification-dependent mixing
length determines the statistics of rare events
at all scales, plausibly extends to three di-
mensions. Experiments should be capable of
testing this hypothesis by comparing PDF's at
various stratification strengths when normal-
ized by the largest length scale in the kinetic
energy spectrum.
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