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ABSTRACT

Some new elements about the transition to
three-dimensionality of variable density mixing
layers are proposed. The two-dimensional ac-
tion of the baroclinic torque is examined from
the strain fields. It is seen to yield drasti-
cally enhanced strain rates in the core region.
Then the consequence on the development of
three-dimensional instabilities is detailed and
the asymmetric development of the streamwise
ribs is described. The streamwise circulation
is shown to be preferentially generated on the
heavy-side of the core and the mechanism of
the translative instability is surprinsingly pre-
served. Compared to the constant density sit-
uation, the amplification of the 3D modes is
lower and their onset is slightly delayed.

INTRODUCTION

The generation-destruction of vorticity by
the baroclinic torque may substantially alter
the transition dynamics of shear flows. In the
two-dimensional stratified mixing layer under
the Boussinesq approximation, Staquet (1995)
described small-scale secondary eddies located
at the saddle points between large-scale struc-
tures on so-called baroclinic layers. The three-
dimensional study of such a situation lead
Showalter et al. (1994) to stress that baro-
clinically generated, or enhanced, vortices may
possibly result in an earlier transition to tur-
bulence. In compressible mixing layers, Lele
(1989) or Sarkar & Pantano (2000) stressed the
consequences of high density ratios.

The present contribution deals with the
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baroclinic effects beyond the Boussinesq ap-
proximation but uncorrelated to compressibil-
ity. The baroclinic torque results from the
inertial component of the pressure gradient
only. The vorticity evolves within a quasi-
solenoidal velocity field without suffering from
strong dilatational effects that are scaled by
any relevant Mach number. This purely iner-
tial influence of density variations is likely to
occur in high Reynolds number mixing of flu-
ids of different densities or in thermal mixing.
Such variable-density shear-layers were previ-
ously considered by Davey & Roshko (1971)
who concluded that the situation where the
lighter fluid is the faster leads to an increase in
the amplification rate of instability oscillations.
More recently a step further was achieved in
the numerical analysis of Soteriou & Ghoniem
(1995) on spatially evolving 2D shear layers.
They confirmed that an asymmetric entrain-
ment resulting from the baroclinic torque is
responsible for the shifting of the center of the
main structures into the lighter fluid, a differ-
ent convection velocity and a modified spread-
ing rate.

In the variable-density mixing layer the vor-
ticity is redistributed in favor of the light-
side vorticity braid, the other being vortic-
ity depleted in a first stage and then fed
with a vorticity source of sign opposite to
the one of the initial layer, see Reinaud et
al. (1999). These two opposite-sign vortic-
ity sheets lay around the vanishing primary
structure core, still figuring the center of this
two-layers system. Then the braids are con-
tinuously streched while enrolling towards this
center in a spiral like scheme. At infinite
Reynolds numbers Reinaud, Joly & Chassaing
(2000) showed that the baroclinically enhanced



2D vorticity braid is likely to break-up into sec-
ondary rollups.

In three-dimensional flows the vorticity dy-
namics is also affected by the vortex stretching
mechanism that enables enstrophy to travel
among vorticity components through 3D insta-
bility modes. The consequences of the baro-
clinic redistribution of spanwise vorticity on
the development of three-dimensionnal modes
is the focus point of the present paper. The in-
terference with the pairing process and further
subharmonics emergence is not yet considered.

The experimental evidence, e.g. Bernal
& Roshko (1986), the stability analysis of
Pierrehumbert & Widnall (1982) and Cor-
cos et Lin (1984), and the direct simulations,
e.g. Rogers & Moser (1992), all converge to-
ward a similar route to three-dimensionality
leading to streamwise vortices lying in the
braid region as a result of both an instabil-
ity located in the Kelvin-Helmoltz (KH) bil-
low called translative instability (TI) and one
located in the vorticity-depleted braid here-
after called shear instability (SI). Knio &
Ghoniem (1992) contributed to the first analy-
sis of these co-working mechanisms under non-
symmetric vorticity conditions resulting from
a weak baroclinic torque. They focussed on
symmetry losses and acknowledged for uneven
intensification and weakening of the stream-
wise vorticity.

As stated by these authors the baroclinic
torque is responsible for such a different two-
dimensional structure that the results on the
spanwise stability of Stuart vortices or even
the KH billow are irrelevant to the 3D stabil-
ity properties of the variable-density situation.
Though this case demands a currently unavail-
able stability study, a step further has been
attempted in intensifying the density variation
and refining the crosswise description of the
layer in order to get a full baroclinic torque
effect, i.e. opposite-sign vorticity sheets as in
Reinaud et al. (1999). The core being vortic-
ity depleted in favor of surrounding vorticity
cups, the translative instability mechanism is
expected to weaken leaving vorticity cups sub-
mitted to the braid instability. This scenario
is examined in the last part of the paper.

PRELIMINARIES

The baroclinic torque

The baroclinic effect is the additional torque
that is felt when an inhomogeneous mass field
is submitted to a pressure gradient normal to

the local density gradient. In the limit of invis-
cid two-dimensional incompressible flows, the
baroclinic torque is the only source of vorticity
variation along the particle path, as stated by
the corresponding vorticity equation :

dtw:-%VPpr (1)

where d; = 0; +u-V is the material deriva-
tive. In this simplified situation the pressure
gradient is directly connected to the material
acceleration a = du/d¢ such that the baroclinic
torque b is given by :

b =ax V(lnp) (2)

Hence the interpretation of the baroclinic
torque as being of inertial nature. This simple
scheme is the one that acts primarily on the
spanwise rollers of the KH instability leading
firstly to a strong asymmetry of the vortic-
ity field, and further on yielding the concen-
tration of the circulation on thinning vortic-
ity sheets of opposite signs, see figure 1. In
three-dimensions the vorticity budget is com-
plemented with the vortex stretching term and
in real flows viscosity acts at the diffusion of
vorticity gradients. At the zero Mach number
limit, dilatation results from density diffusion
only. The divergence of the velocity field being
s = V-u and p standing for (In p), the continu-
ity equation turns into an advection-diffusion
equation :

dio =DAp = —s (3)

Provided 7 = p/p-+u?/2 is the specific pressure
head, the momentum equation can be recasted
in the following form :

6tu=u><w—V7r—%Vg+uAu (4)

The numerical procedure

These equations are solved for the temporal
mixing layer with the streamwise (x) velocity
profile in the crosswise (z) direction :

up = Uerf(nt/2 2) (5)
3

Streamwise and spanwise (y) periodic condi-
tions are imposed within a classical pseudo-
spectral approach on a mesh counting up to
192x96x264 nodes yielding Reynolds num-
bers, based on the initial vorticity thickness,
of 500. The density ratio of the upper to the
lower streams has been set to 3. Harmonic
perturbations of equal intensities are imposed
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(a)

(b)

Figure 1: Spanwise vorticity wy contours of the two-
dimensional variable density mixing-layer at t = 12 : (a)
Re = UbY/v = 3000 (b) Re = 500. The density ratio
Sp = pupper/Plower = 3. (c) contours of the strain € in the
sense of Caulfield and Kerswell (2000) : contour increment
is U/363. Shaded region where rotation prevails over strain
according to CK.

to promote the KH and the spanwise instabili-
ties. The two-dimensional mode is perturbated
with the eigenfunctions of the most unstable
mode agp = 21/, = 0.48+/7/8% given by the
constant density linear stability analysis. In
the variable density case, a global convection
velocity, —u,, opposite to the group velocity
of the 2D perturbation, is added to the ve-
locity profile (5) in order to keep the main
structure centered in the temporally evolving
frame. The three-dimensional mode is choosen
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Figure 2: The increase of the circulation I'~ associated with
baroclinically enhanced negative regions of vorticity, non-
dimensioned by the initial circulation I'g = —2AU.

as Ay = 0.5z, close to the most unstable wave-
length given by the stability analysis of Stuart
vortices by Pierrehumber & Widnall (1982).
Its shape is the streamwise invariant rod (STI)
used in the three-dimensional stability analy-
sis of Rogers & Mosers (1992). As in Knio
& Ghoniem (1992), the characteristic scales
and initial conditions are the same between the
constant and variable density simulations.

THE STRAIN RATE OF THE 2D MIXING
LAYER

Since the baroclinic torque is strongly de-
pendent on the density gradients it is also
sensitive to the Reynolds number. Figures
1(a) and (b) illustrate the structure of the
two-dimensional vorticity field of mixing-layers
with density ratio of 3 and Reynolds numbers
(based on the initial vorticity thickness) of 500
and 3000, respectively.

Though the growth of the primary mode
energy is only weakly affected by the baro-
clinic torque (not shown), it is striking how
the amounts of negative and positive circula-
tion associated with that vorticity source is
anything but negligeable against the initial cir-
culation in the period. It is straightforward to
show that the latter is 'y = —2U X where A
is the period length. Figure 2 illustrates the
departure of the negative circulation I'~ from
that value. Since the circulation is an invari-
ant of the problem, a corresponding positive
circulation is generated on heavy-side braids,
see Reinaud et al. 2000. Again, the higher the
Reynolds number the more significative is the
departure from the constant density situation.

As far as the three-dimensionalization of
this flow is concerned, a description of the
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Figure 3: The evolution of the strain v normal to the density
gradient at the saddle point between the main 2D structures.
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Figure 4: The evolution of the maximum strain rate Smaz
(positive eigenvalue of tensor D) over the entire domain.

2D strain field is needed. The strain tensor
D = (Vu + Vu!)/2 is projected there in the
direction of the unitary vector n normal to the
local density gradient conformly to, e.g. Ottino
(1989), : v = D : nn. Figure 3 shows how the
evolution of the stain rate at the saddle point
region is weakly affected by the redistribution
of vorticity in the main structure.This results
from the conservation of the overall circula-
tion within the period, see Corcos & Sherman
(1984). But this global invariance statement
does not extend to local amounts of spanwise
circulation. From figure 1(c) it is clear that the
strain field looses the symetry of the constant
density roll-up. Compared to the contours of
€ together with the rotation-dominated shaded
region by Caulfield & Kerswell (2000), it turns
out that the upper braid (heavy fluid side) is
the region of maximum strain rate and mini-
mum rotation. Figure 4 confirms that much
higher levels of strain are produced there un-
der the action of the baroclinic torque. This
is retained as a main difference expected to af-
fect the development of streamwise structures
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Name  pup/pe  Re Ny Uc 'z /FS
PS / 500 128 0. 0.023
VD 3 500 192 0.28  0.023

Table 1: .Global parameters of the passive scalar and baro-
clinically modified three-dimensional simulations

in 3D mixing layers through the SI mechanism.

THE STRUCTURE OF THE 3D SHEAR-
LAYER

Two simulations are analysed in this paper,
one solving the passive scalar (PS) equations
and the other (VD) with full variable density
effects. The parameters of the PS and VD
cases are reported in table 1. Throughout the
paper, time is normalized by 7 = §°2 /U, vortic-
ity by the initial maximum 2U/60 and strain
by 1/7. Unless quoted, the vorticity contours
increment is always U/60 starting from zero.
The positive vorticity contours are sketched
by solid lines and negative contours by dashed
ones. The tic marks along the spatial coordi-
nates are distributed every 62.

The spanwise vorticity

The structure of the spanwise vorticity
cross-section is derived directly from the folded
distribution established in 2D. In both the rib
plane and the ”off-rib” one, spanwise vorticity
is redistributed in thin sheets of alternate signs.
The contour maps given in figure 5, taken at
t = 8, are still simple. In the ”off-rib” base
plane, cutting the center of the upper span-
wise mushroom structure, two counter-rotative
thin vorticity layers are brought closer to each
other than in the 2D case, locally defining a
jet flow of light fluid towards the heavy side.
In the rib plane, the sketch is quite similar,
though no more symetric, to the one given by
Rogers & Mosers (1992) fig. 19(a). The anal-
ysis of subsequent spanwise vorticity maps is
more difficult due to the complex structure of
the core region as seen from the streamwise
vorticity contours of figure 8.

The rib vortices

Streamwise vorticity is collapsing into rib
vortices as in the constant density case. At
t = 8, figure 6 indicates that the streamwise
structure is growing more rapidly on its right
side lying above the main structure. This can
be clearly associated with the favourable ef-
fect of the additional strain in that region, as
mentioned in the 2D analysis. A weak region
of negative streamwise vorticity is also noted
at the center of the core and is the signature



Figure 5: Contours of spanwise vorticity wy of the three-
dimensional variable density mixing-layer at ¢t = 8. Top :
Base Plane cross section, bottom: Rib Plane cross section.

of the still active translative instability mech-
anism. At ¢ = 12 the main contribution to the
streamwise circulation comes from the domi-
nant rib vortices, see figure 7. The mechanism
acting on spanwise vorticity in 2D, namely the
baroclinic source on the light side and sink
on the heavy side, is recovered in the stream-
wise direction. From figure 8 (right views) the
rib vortices are developing with a companion
counter-rotative layer on the heavy side. This
association yields again a higher entrainment
of light fluid into the heavy medium as seen
from the density half maps.

Analysis of the growth of 3D modes

The spatial structure of the rib vortices
is seen to be affected by the modified strain
field and by the streamwise baroclinic torque.
The sensitivity of the amplification rate of
the three-dimensional modes to these changes
is discussed. Figure 9 gives the time evo-
lution of the energy content of the pure
two-dimensional mode Ajg, corresponding to
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Figure 6: Contours streamwise vorticity wz at t = 8 (top)
and t = 12 (bottom). Contour increments is U/82, tic marks
are at 60.

the streamwise and spanwise wavenumbers
(kg,ky) = (2m/)A;,0), and of the cumulated
three-dimensional modes , i.e. those which
satisfy ky # 0. In this semilog plots the
slopes of linear portions are equivalent to the
exponential amplification rates of the small
perturbations. Both the PS and VD cases
undergo a two-stage evolution for Asp , the
first one connected with the growing 2D mode
and the second one specific of the three-
dimentionalization of the flow. The VD ex-
hibits a delayed transition at ¢ = 12 (9 for
PS) and a lower amplification rate osp_yp =
o3p—ps/2. This first conclusion stands for the
linear response of the layer to the presently
small perturbations. The non-linear regime as
well as the higher Reynolds number domains
have to be further explored.
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Figure 7: Time evolution of the streamwise circulation
I'z(z,t). Top : passive scalar, bottom : variable density.

Mech., vol. 170, pp. 499.

Corcos, G.M., and Sherman. F.S., 1984,
J. Fluid Mech., vol. 139, pp. 29.

Caulfield, C.P. and Kerswell, R.R., 2000,
Phys. Fluids, vol. 12(5), pp. 1032.

Knio, O.M. and Ghoniem, A.F., 1992,
J. Fluid Mech., vol. 243, pp. 353.

Lele, S., 1989, CTR Report N89-22827.

Ottino, J.M., 1989 The kinematics of miz-
ing: stretching, chaos and transport, CUP.

Pierrehumbert, R.T. and Widnall, S.E.,
1982, J. Fluid Mech., vol. 114, pp. 59.

Reinaud, J., Joly, L. and Chassaing, P.,
1999, T'SFP-1, Santa-Barbara.

Reinaud, J., Joly, L. and Chassaing, P.,
2000, Phys. Fluids, vol. 12, pp 2489.

Rogers, M.M. and Moser, R.D., 1992,
J. Fluid Mech., vol. 243, pp. 183.

Sarkar, S. and Pantano, C., 2000, Int. Conf.
on Variable Density Turbulent Flows, France.

Schowalter, D.G., Van Atta, C.W. and
Lasheras, J.C., 1994, J. Fluid Mech., vol. 281,
pp. 247.

Soteriou, M.C. and Ghoniem, A.F., 1995,
Phys. Fluids A, vol. 7(8), pp. 2036.

Staquet, C., 1995, J. Fluid Mech., vol. 296,

pp. 73.

{

.
3
W7

7 =
I/ D
|/(’)
VN
)

T
1
T

T T T

y y

Figure 8: Contours of density and streamwise vorticity of the
three-dimensional variable density mixing-layer at ¢ = 12.
Contour increments for the density (left) are Ap/6. Top :
Mid-braid cross section, bottom: Core plane cross section.
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Figure 9: Time evolution of the normalized energy in all
three-dimensional modes A3zp and in the two-dimensional
one Ajg.





