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ABSTRACT

It is shown that the two-dimensional shear-driven
flow in a plane square enclosure is a limiting case of
the more general shear-driven flow that can be
realized experimentally in a toroid of square cross-
section. Visualization and calculations of the flow in
a toroid reveal many of the features displayed by
sheared fluids in finite-length parallelepipeds, as
well as new findings. These include the appearance
of Goertler vortices and flow unsteadiness as
precursors for laminar to turbulent flow transition,
and the occurrence of an oscillatory state of fluid
motion not observed in parallelepipeds. Unlike the
shear-driven flow in a parallelepiped, that in a toroid
is devoid of contaminating end wall effects.
Consequently, it represents a more general paradigm
in fluid mechanics.

INTRODUCTION

The two-dimensional (2D) shear-driven flow in a
plane rectangular enclosure, also referred to as the
“lid- or wall-driven cavity flow,” has been a
computational fluid dynamics paradigm of long-
standing interest. Although such a flow has not been
rigorously realized in practice, experimental
approximations have been achieved in enclosures
shaped like parallelepipeds of rectangular cross-
section. In the parallelepiped geometry, fluid motion
is induced by the in-plane sliding of one of the four
longitudinal walls of the parallelepiped in a direction
normal to its longitudinal axis.

In the case of the plane square enclosure (Fig. 1-a),
the flow is characterized by the Reynolds number Re
= D U/v, where D is the characteristic cross-section
length, U is the sliding wall velocity, and v is the
kinematic viscosity of the fluid. In the case of a
parallelepiped of square cross-section (Fig. 1-b) it is
also necessary to specify the longitudinal to cross-
section length ratio, L/D. In contrast to the 2D flow
in the idealized plane square enclosure, that in a
parallelepiped is 3D due to end wall effects, and
beyond a critical value of Re because of centrifugal
instabilities.

We propose a new geometrical configuration for the
investigation of flow instabilities in shear-driven
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Figure 1. Shear-driven flows in enclosures of square cross-
section: a) 2D flow in a plane enclosure; b) 3D flow in a
parallelepiped. At sufficiently large Re, centrifugal
instabilities trigger Goertler vortices in the parallelepiped
where the two end walls fix the sense of rotation of the
corner (“c”) vortices and, as a consequence, of the
remaining (“G”) vortices. The sense of rotation of the
vortices in the bottom half of the parallelepiped is shown
projected on an x-z plane.

enclosures that is realizable experimentally and
numerically without incurring the end wall bias
present in the finite parallelepiped configuration.
This consists of the shear-driven flow in a toroid of
square cross-section where, in the limit of low Re
and large curvature radius R, fluid motion
approaches that in the idealized plane square
enclosure. As for the parallelepiped configuration,
with increasing Re centrifugal instabilities trigger
Goertler vortices that eventually become unsteady
and transition to turbulence. However, the absence of
end wall effects renders the toroid configuration a



more general fundamental paradigm than its
parallelepiped predecessor.

EARLIER WORK

Numerical calculations of the 2D wall-driven flow in
a plane rectangular enclosure have been performed
by, for example, Ghia et al. (1982), Iwatsu et al.
(1989, 1990) and Nishida and Satofuka (1992).
Corresponding 3D calculations of the parallelepiped
geometry have been performed by Koseff et al.
(1983), Freitas et al. (1985), Kim and Moin (1985),
Freitas and Street (1988), and Iwatsu et al. (1989,
1990). Experimental investigations of the paralle-
lepiped geometry include the pioneering studies
performed by Koseff and Street (1984a, b, c), and
later by Prasad and Koseff (1989) and Aidun et al.
(1991). The stability of the 2D base flow to
longitudinal disturbances in an infinitely long
parallelepiped has been investigated numerically by
Ramanan and Homsy (1994), Ding and Kawahara
(1998, 1999) and , more recently, by Albensoeder et
al. (2001). By means of linear stability analysis and
experiments, the latter show the dependence of the
instabilities observed on the enclosure cross-section
dimensions. For parallelepipeds of cross-section
equal to or close to square, they conclude that the
steady 2D flow destabilizes to a steady 3D flow of
dimensionless wavenumber k (= 2n/(A/D)) = 15.43
for a critical Re = 786.3. They also find from their
experiments that end wall effects can suppress
instabilities in finite-length parallelepipeds.

The investigations performed in parallelepipeds
reveal significant cross-stream motions in planes
perpendicular to the main shear-driven recirculating
flow. These motions are induced by: a) transverse
pressure gradients arising at each of the two end
walls; and, b) centrifugal instabilities responsible for
Goertler vortices that arise above a critical value of
the Reynolds number (or an equivalent Goertler
number). The vortices appear as counter-rotating
pairs periodically distributed in the longitudinal
direction (x-direction in Fig. 1-b) and with their axes
aligned with the main recirculating flow. (They have
been referred to as Taylor-Goertler-like vortices in
the literature but appear to share more in common
with the centrifugal instability investigated by
Goertler (1951) in curved boundary layers than the
centrifugal instability investigated by Taylor (1923)
in the space between concentric cylinders in relative
rotation.)

The end wall pressure gradients in parallelepipeds
fix the sense of rotation of the first vortex next to
each wall. In turn, the end wall vortex fixes the sense
of rotation of the Goertler vortex next to it and so on.
Because the end wall pressure-gradient forces differ
in magnitude from the centrifugal forces, and
because of secondary instabilities, non-linear
interactions among the vortices can induce time- and
space-dependent variations among them as well as in
their number. Although interesting, there is an

unavoidable bias in the finite parallelepiped
configuration that unnecessarily complicates both
the physical understanding and the numerical
calculation of 3D shear-driven enclosure flows.

A NEW SHEAR-DRIVEN ENCLOSURE FLOW
PARADIGM

The end wall bias present in the finite parallelepiped
geometry can be completely removed by turning the
parallelepiped into a toroid. This is accomplished
conceptually by curving the parallelepiped uniformly
around a pair of parallel longitudinal walls and
“dissolving” the end walls at the common plane
where they meet to create a continuous, unobstructed
toroid of square cross-section (Fig. 2-a). One of the
flat walls of the toroid (the top wall in Fig. 2-a) is
made to slide radially outwards (or inwards) with an
axisymmetric velocity distribution in order to drive
the flow in the toroid by viscous shearing. In
addition to Re, the new quantity 8 = D/R. must be
specified to characterize the fluid motion. Clearly,
for values of 8 — 0, the effects of geometrical
curvature are rendered negligible, resulting in a flow
configuration which: i) at sufficiently low Re
rigorously approximates the 2D shear-driven flow in
a plane square enclosure; ii) at sufficiently high Re
will display the Goertler vortices observed in finite
parallelepipeds, but devoid of end wall bias; and, iii)
at even higher Re will undergo transition to
turbulence. In this sense then, the shear-driven flow
in a toroid represents a more general fundamental
fluid mechanics paradigm than its predecessors.

Using the second order accurate (space and time)
explicit CUTEFLOWS Navier-Stokes solver of
Humphrey et al. (1995), Phinney and Humphrey
(1996) and Sudarsan et al. (1998) have calculated the
shear-driven flow in a toroid of square cross-section
to investigate the effects of varying 6 and Re on the
flow. In particular, the latter show that above a
critical value of Re, depending on the value of 6, the
flow is rendered 3D and periodic in the
circumferential direction by the appearance of pairs
of Goertler vortices that can alternate their sense of
rotation with time.

The present work explores the 3D, unsteady flow
regimes in two shear-driven toroids of square cross-
section. The study is part of an ongoing
collaboration between JACH at the University of
Virginia (UVA) and FG and JH at the University of
Rovira i Virgili (URV). With reference to Fig. 2-a,
Case 1 (the idealized case) consists of a toroid with
g/D = 0, the top wall sliding radially outwards with
axisymmetric, constant velocity U. With reference to
Fig. 2-b, Case 2 (the experimental approximation to
Case 1), 0 < g/D << I and the flow is driven by the
shearing action of the wall jet that expands radially
outwards along the toroid top wall. For Case 1,
calculations are performed for & = 0.005 with Re =
3200, and for & = 0.25 with Re = 2400. For Case 2,
the Reynolds number is defined as Re, = U, D/v,
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a)

b)

Figure 2. Experimental approximation (b, side view) of the
shear-driven flow in an idealized toroid configuration (a,
top view). In the experiment it is the shearing action of the
fluid that drives the flow in the toroid. Note, g << D.

where U, is the mean velocity of the fluid in the gap
at the plane where it enters the toroid. For this case
calculations are performed for 6 = 0.51 and g/D =
0.04 with Re;, = 1143, and visualization results are
obtained for 6 = 0.25 and g/D = 0.015 with Re, =
5000. The experiments for Case 2 are performed in
an accurately machined plexiglass test section with
D = 0.05 m and R, = 0.20 m. The flow entrance
section to the toroid is shaped like a trumpet of
quarter-ellipse cross-section on which rests a
vertically translatable flat top. This is fed by a
constant head of water, metered and conditioned
prior to entering the trumpet section. The flow in this
section first decelerates slightly and then accelerates
strongly as it approaches the toroid. Crushed mother
of pearl illuminated by a plane light beam from a 5-
mW He-Ne laser is used to visualize flow structures.
See Cushner (2000) for further experimental details.
The original CUTEFLOWS code isused to

calculate Case 1. For Case 2, a fourth order (space
and time) version of the code, developed at URY, is
employed. For Case 1, the length of the calculation
domain in the circumferential direction consists of a
sector of A8 = 0.003 rad for the case with 6 = 0.005
and A@ = 0.157 rad for the case with 6 = 0.25, these
angles being estimated from scaling considerations
based on experimental and numerical results in
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parallelepipeds. For Case 2, the calculation domain
consists of the entire toroid. For Case 1
circumferentially periodic and symmetric boundary
conditions are explored with the periodic yielding
more realistic results. In both cases the no-slip
condition is imposed for velocity at all surfaces in
the toroid. For Case 2, the flow in the gap where it
enters the toroid is fully developed Poiseuille flow.
The flow leaving the toroid redevelops in a gap of
equal g/D and length I[/D = 0.55. For both Case 1 and
2 calculations are started from corresponding 2D
(axisymmetric) solutions. For Case 1 it is necessary
to seed the flow with weak, volume distributed,
random disturbances to accelerate the appearance of
the Goertler vortices. This was also the case in the
shear-driven parallelepiped calculated by Kim and
Moin (1985) but is counter to the findings of earlier
linear stability analyses which show that the 2D flow
in an infinitely long parallelepiped is unstable to
infinitesimal disturbances. We attribute the need for
artificial disturbances in Case 1 to numerical
diffusion. In contrast, for Case 2, using the higher
order scheme, such disturbances are not necessary
and the vortices appear spontaneously. For both
cases substantial grid refinement tests are performed
culminating in (N,, N, Ng) grids of (50, 50, 30) for
Case 1 and (72, 72, 192) for Case 2. (In particular,
the new fourth order (space and time) version of
CUTEFLOWS was shown to yield vortical flow
structures with characteristics in excellent agreement
with those obtained by Albensoeder et al. (2001),
calculated here in a parallelepiped of square cross-
section corresponding to Fig. 1-b with L/D = 2 and
using periodic boundary conditions in the x
direction; namely, we find k= 15.7 at Re = 850.) For
Case 1 with 6> 0, the calculation time step was 107
s and for Case 2 it was less than 10" s. Typical
calculation times for Case 2 on a dual processor Dell
workstation (PWS620) are 9.67 hours for 100
seconds of numerical flow development.

RESULTS AND DISCUSSION

A brief summary of some main findings is provided
here using Case 2 for illustration. (For Case 1 a
digital movie is available.) Figures 3 and 4 show
experimental visualizations of the flow (obtained at
different times) in various z'-0 and r'-6 planes for
Re, = 5000, §=0.25, and g/D = 0.015; r" = (r-r)/(r,-
r) and z = zD. Although this condition
corresponds to an unsteady flow regime, Goertler
vortices of approximate wavenumber k = 12.5 are
clearly observed. At small values of z* (near the
toroid bottom wall), the vortices are radially aligned
and fill the entire space between r* = 0 and 1. With
increasing z~ the vortices orient themselves axially
and are especially prominent along the inner curved
half of the toroid, 7 < 0.5. Calculated values of the
instantaneous circumferential velocity component
for Case 2 with Re, = 1143, 6=0.51 and g/D = 0.04
are “visualized” using shades of gray ranging from



white to black in Fig. 5. These 3D results are in
excellent  qualitative  agreement  with  the
experimental observations in so far as the spacial
distributions of the vortices is concerned. For the
lower Re, and larger J calculated, however, flow
unsteadiness is markedly reduced, and the
wavenumber of the structures is x = 8.7. (Note well:
in a toroid x (= 24/(A/D)) = (2aRc/A) 6 = Ngp O
where Ngp is the total number of Goertler vortex
pairs.)

Figure 3. Visualization of the flow in a toroid with Re, =
5000, 6= 0.25 and g/D = 0.015. Pictures show views of
z'-@ planes as seen through the curved outer side wall of
the toroid: (a) "= 0.9; (b) 0.7; (c) 0.5; (d) 0.3; and (e) 0.1.

a)

Figure 4. Visualization of the flow in a toroid with Re, =
5000, 6 = 0.25 and g/D = 0.015. Pictures show views of
r'-@ planes as seen through the top wall of the toroid over
a sector of 18 degrees: (a) 2'=0.9; (b) 0.7; (c) 0.5; (d) 0.3;
and (e) 0.1.

a)

Figure 5. Instantaneous distributions of the calculated
circumferential velocity component at 1 = 779 in -0
planes of the toroid with Re, = 1143, §=0.51 and g/D =
0.04: (a) z2'=0.7; (b) 0.5 and (c) 0.1. Black and white areas
denote regions of opposite velocity.
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Figure 6 provides a calculated time record of the
dimensionless circumferential velocity component
(u'g=ug/Upatz =05, r =05 and 6=0.227 for
the conditions of Fig. 5 The plots in Fig. 5
correspond to ¢ (= tU, /4D) = 779 in the record.
Although the magnitudes of the monitor velocity and
its changes in Fig. 6 are very small, and while the
flow has had a fairly large number of enclosure
“turnovers” to develop, it appears to still be
evolving. At the time of writing we have not yet
concluded the calculations of these conditions.
Therefore, we cannot say definitively that the flow
dynamics continues to evolve towards a final,
periodic state, or that it is actually orbiting within the
basin of a strange attractor. Nevertheless, it is
especially noteworthy that the entire flow in the
toroid alternates between two states as a function of
time. This is most clearly illustrated in the velocity
vector plots presented for two times in the z'-6
plane located at " = 0.5, in Fig.7. While the shape,
size and number of the calculated structures are the
same at both times, their location relative to a fixed
circumferential reference location has been displaced
by half a wavelength (4/2). A similar observation
has been made by Sudarsan et al. (1998) and we
believe the phenomenom is asociated with a periodic
coupling (via the shearing flow) between the tilting
and stretching of 6-component of vorticity near the
outer-radius wall of the toroid with that occuring at
the inner-radius wall. However, further calculations
and analysis are necessary to elucidate this.

Time averages of the results calculated for Case 1
with Re = 3200 and & = 0.005 (not plotted here)
show very good agreement with the Goertler
structures and time-averaged velocity profiles
obtained by Koseff and Street (1984a, c) in a
parallelepiped with Re = 3300. For these conditions
and for Re = 2400 with 3 = 0.25, the flow is very
unsteady and the Goertler vortices are observed to
meander chaotically.

To conclude this section we comment on a basic
difference between the toroid flows corresponding to
Case 1 (Fig. 2-a) and Case 2 (Fig. 2-b). This has to
do with the manner of fluid shearing. In Case 2, a
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Figure 6. Time record of the dimensionless circumferential
velocity component at z* = 0.5, r" = 0.5 and 6 = 0.227 for
the conditions of Fig. 5.
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Figure 7. Instantaneous velocity vectors at times
£'=783.2 (a) and +'=788.0 (b).in the lower half of the
7'-6 plane at r” = 0.5 for the conditions of Fig. 5.

wall-jet boundary layer develops along the top wall
of the enclosure resulting in a stagnation line along
the outer curved wall of the toroid that falls below
the exit gap. Preliminary tests show that, for
otherwise identical conditions, the 2D to 3D
transition occurs at lower value of Reynolds, and the
number of Goertler vortices is less, in a toroid for
Case 1 than for Case 2.

CONCLUSIONS
Because of the absence of end wall effects, the

shear-driven flow in a toroid of square cross-section
represents a more general fluid mechanics paradigm
than its parallelepiped predecessor. In the limit § —
0 and at sufficiently low Reynolds number, the flow
in a toroid approximates the 2D flow in a plane
enclosure. At sufficiently high Reynolds number, the
flow in a toroid becomes 3D and, eventually,
unsteady. We provide here some new flow field
results, as well as the finding that, in a toroid, the
wavenumber kK = Ngp 0 is 12.5 for 6 = 0.25 (Case 2,
experiments) and 8.7 for & = 0.51 (Case 2,
calculations). Also, in close agreement with
Albensoeder et al (2001), we find ¥ = 15.7 in an
infinitely long parallelepiped. This suggests that the
wavenumber k decreases with increasing curvature
ratio, . Further work is necessary to neatly establish
the transition from 2D to 3D flow, the appearance of
flow unsteadiness, the conditions leading to (and an



understanding of) the time-dependent alternating
sense of rotation of the Goertler vortices and,
ultimately, transition to turbulence as a function of
the relevant geometrical and dynamical parameters.
Radial accelerations and decelerations induced by
geometrical curvature on the flow in a toroid render
it especially rich in its physics. While this physics
has yet to be explored in full depth, both
experimentally and numerically, the new paradigm
posed here serves as a challenging test case for
computational fluid dynamic procedures aimed at
solving complex 3D unsteady laminar and turbulent
flows.
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