A ROLE OF ELASTIC ENERGY IN TURBULENT DRAG
REDUCTION BY POLYMER ADDITIVES

Taegee Min
Center for Turbulence and Flow Control Research, Institute of Advanced Machinery and Design,
Seoul National University,
Seoul 151-742, Korea
tmin@eddy.snu.ac.kr

Jung Yul Yoo
School of Mechanical and Aerospace Engineering, Seoul National University
Seoul 151-742, Korea
jyyoo@plaza.snu.ac.kr

Haecheon Choi
School of Mechanical and Aerospace Engineering, Seoul National University
Seoul 151-742, Korea
choi@socrates.snu.ac.kr

Daniel D. Joseph
Department of Aerospace Engineering and Mechanics, University of Minnesota
107 Akerman Hall, 110 Union Street SE, Minneapolis, MN 55455, USA
joseph@aem.umn.edu

ABSTRACT

In the present study, the mechanism of tur-
bulent drag reduction by polymer additives in
a fully developed channel flow is investigated
using direct numerical simulation. In order to
see the elastic effect on turbulent drag reduc-
tion, the dilute polymer solution is expressed
with an Oldroyd-B model which shows a lin-
ear elastic behavior. Simulations are carried
out by changing the Weissenberg number at
the Reynolds numbers of 3000 and 15000. The
onset criterion for drag reduction predicted in
the present study shows good agreement with
previous theoretical and experimental studies.
In addition, the turbulence statistics such as
the mean streamwise velocity and rms veloc-
ity fluctuations are also in good agreements
with previous experimental observations. The
kinetic and elastic energy transport equations
are derived to investigate the effect of elastic-
ity on drag reduction. It is shown that the
polymer stores the elastic energy from the flow
in the sublayer and then releases again in the
sublayer when the relaxation time is short (no
drag reduction). However, when the relaxation
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time is long enough (drag reduction), the elas-
tic energy is transported to and released in the
buffer layer. Therefore, drag reduction occurs
when the turbulent velocity scale is larger than
the characteristic velocity scale of the polymer
solution.

INTRODUCTION

Since Toms (1949) reported turbulent drag
reduction by polymer additives, many stud-
ies on this phenomenon have been carried out.
The first explanation about drag reduction is
‘time criterion’ (Lumley 1969) which says that
drag reduction occurs when the relaxation time
of the polymer solution is longer than the tur-
bulent time scale of motion. In this scenario,
drag reduction comes from the elongational
viscosity which is increased greatly by ‘coil-
stretch’ transition under the time criterion.
However some studies (de Gennes 1990; Sreeni-
vasan & White 2000) criticized the scenario
using the elongational viscosity by arguing that
the ‘coil-stretch’ does not occur in turbulent
flow.

In addition, the same criterion as the time



criterion is derived from the ingenious work
of Goldshtik et al. (1980) where they applied
a perturbation method to viscoelastic models
(Maxwell and Oldroyd-B models) and showed
that the time criterion might come from the
elastic effect of dilute polymer solution.

In the mean time, Tabor & de Gennes (1986)
thought that the elastic energy stored in poly-
mer molecules causes drag reduction (elastic
theory). That is the polymer molecules absorb
the small-scale turbulence energy by prohibit-
ing the turbulent cascade, which results in drag
reduction. Joseph (1990) explained that the
shear-wave speed from elasticity is associated
with the cut-off criterion for turbulent cascade.

Recently, direct numerical simulations
(DNS) have been performed to investigate
the mechanism of drag reduction (Orlandi
1995; den Toonder et al. 1997; Sureshkumar
et al. 1997; Dimitropoulos et al. 1998; De
Angelis et al. 1999). Orlandi (1995) and
den Toonder (1997) adopted the elongational
viscosity models and obtained drag reduction.
However, such models are based on inelastic
constitutive equations so that they cannot
predict the onset criterion for drag reduction.
Sureshkumar et al. (1997), Dimitropoulos et
al. (1998) and de Angelis et al. (1999) adopted
viscoelastic models but used low-order spatial
discretization schemes (artificial diffusion
scheme) to avoid numerical instability. Due to
the excessive numerical diffusion introduced by
the artificial diffusion scheme, higher elasticity
(or higher Weissenberg number) is required to
produce drag reduction in these studies (see
Min et al. 2000).

The objective of the present study is to
propose the mechanism of drag reduction by
conducting direct numerical simulation of tur-
bulent channel flow with polymer additives. In
order to investigate the effect of elasticity, an
Oldroyd-B model (linear Hookean dumbbells)
is used instead of the FENE-P model (non-
linear Hookean dumbbells). The elastic theory
is combined with the kinetic theory (Bird et al.
1987), and then the kinetic and elastic energy
transport equations are derived. The energy
transfer between the flow and polymer is ex-
amined through these equations, from which
the drag-reduction mechanism is elucidated.

GOVERNING EQUATIONS AND NUMER-
ICAL METHOD

The non-dimensional governing equations of
unsteady incompressible viscoelastic flow rep-
resented by an Oldroyd-B model are as follows:
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where u; is the velocity, p is the pressure, 7;;
is the polymeric stress, Re = Ud/v is the
Reynolds number, We = AU/J is the Weis-
senberg number, U is the centerline velocity of
the fully developed laminar flow, § is the chan-
nel half height, A is the relaxation time and 8
is the ratio of solvent viscosity contribution to
total viscosity of solution. In the present study,
0 is fixed at 0.9 for the case of viscoelastic fluid.
For Re = 3000 (Re; = ur,0/v ~ 135), a calcu-
lation domain of 74 x 26 x 3.54 is chosen in the
streamwise (z), wall-normal (y) and spanwise
(2) directions, respectively, with 64 x 97 x 96
grids. Here u,, is the wall shear velocity for
Newtonian fluid flow (8 = 1). For Re = 15000
(Re; ~ 530), the minimal channel concept by
Jiménez and Moin (1991) is adopted and a cal-
culation domain of 2.46 x 2§ x 0.99 is chosen
with 128 x 257 x 96 grids. We impose the peri-
odic boundary condition in the streamwise and
spanwise directions, and the no-slip boundary
condition in the wall-normal direction. A fully
developed turbulent flow field for a Newtonian
fluid (8 = 1) is used as an initial condition for
the simulation of viscoelastic fluid flow.

The numerical algorithm is based on a semi-
implicit, fractional step method. A fourth-
order compact difference scheme (Lele 1992) is
used for the polymer stress derivative 07;;/0z;
in (1), and a modified compact upwind differ-
ence scheme (MCUD3, Min et al. 2000) is
used for the polymer stress convection term
UmO0Ti;j /0% in (3). All other terms are dis-
cretized using the second-order central differ-
ence scheme.

There is no diffusion term in the constitu-
tive equation (3) so that the amplification of
small numerical disturbances breaks down nu-
merical solutions even at modest Weissenberg
numbers. In order to overcome the numeri-
cal breakdown, numerical methods involving
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low-order spatial discretization scheme (arti-
ficial diffusion method, AD) have been used
in the previous direct numerical simulations
(Sureshkumar et al. 1997; Dimitropoulos et
al. 1998; de Angelis et al. 1999), even though
they smear the steep gradients of the polymeric
stresses. Figure 1 shows the time histories of
the mean pressure gradient at We = 2 in the
cases of using AD and MCUD3, respectively.
It is clearly shown that, at We = 2, MCUD3
predicts drag reduction but AD does not due
to excessive numerical diffusion.

2.5x10%

Newtonian

AD

1.5x10”
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Figure 1: Time histories of the mean pressure gradient re-
quired to drive a fixed mass flow rate in a channel at We = 2
in the cases of AD and MCUD3.

RESULTS AND DISCUSSIONS

Changes in Drag and Velocity

Figure 2 shows the time histories of the
mean pressure gradients at Re = 3000 and
15000. It is seen that drag decreases more
with larger We and drag reduction occurs at
We, = MuZ Jv>5~6.

Figure 3 shows the mean streamwise veloc-
ity and the rms streamwise and wall-normal
velocity fluctuations in the cases of Newtonian
(8 = 1) and viscoelastic fluid flows (We = 1
and 2) at Re = 15000 (Re, ~ 530), together
with the previous experimental results. The
mean streamwise velocities show upward shifts
at We =1 and 2, as compared to the Newto-
nian case. The u,,,s increases more with larger
We but vppys and wyps (not shown here) de-
crease more with larger We. It is not easy to
pick up the correct values of 8 and We from
experimental results (see Joseph 1990). Since
the experimental results of Luchik & Tieder-
man (1988, Re, ~ 520) and Wei & Willmarth
(1992, Re, ~ 570) showed about 20% and 30%
drag reduction, respectively, the present results
at We =1 and 2 (21% and 29% drag reduc-
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Figure 2: Time histories of the mean pressure gradient at dif-
ferent Weissenberg numbers: (a) Re=3000; (b) Re=15000.
tion, respectively) are compared with them.
As shown in figure 3, present results are in
good agreements with the experimental results
of Luchik & Tiederman (1988) and Wei & Will-
marth (1992).

Onset Criterion for Drag Reduction

The ‘time criterion’ suggested by Lumley
(1969) indicated that the onset We, for drag
reduction is 1. Berman (1977) showed that the
onset We, ranges from 1 to 8 depending on the
properties of polymers and solvents. Goldshtik
et al. (1980) studied drag reduction theoreti-
cally and suggested that the onset We, is 1
for the Maxwell fluid and it is 5 ~ 6 for the
Oldroyd-B model with g = 0.9.

With DNS, Orlandi (1995) and den Toon-
der et al. (1997) could not suggest the onset
We, because they used the inelastic constitu-
tive models. Sureshkumar et al. (1997) and
Dimitropoulos et al. (1998) showed that drag
reduction occurred at We, = 25 but not at
We,; =12.5. As shown in figure 1, when AD is
used (as was done in Sureshkumar et al. 1997
and Dimitropoulos et al. 1998), drag reduc-
tion does not occur at We, = 12 (We = 2 at
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Figure 3: (a) Mean streamwise velocities; (b) rms velocity
fluctuations. Re = 15000.

Re = 3000) while it occurs when MCUD3 is
used. Therefore the onset criterion suggested
by Sureshkumar et al. (1997) and Dimitropou-
los et al. (1998) may have to be modified by
considering the effect of the excessive numeri-
cal diffusion on drag.

Joseph (1990) suggested another onset cri-
terion that drag reduction occurs when the ve-
locity scale of turbulence u, exceeds the shear
wave velocity u. = \/v/A. Joseph’s hypoth-
esis is valid for Maxwell fluid and it can be
expressed for the Oldroyd-B model (see Joseph
1990) as

v 1
uT>uCZ\/;:\/Re-We-(1—ﬁ)' (4)

At Re = 3000, u,/U = 0.04485 and u./U =
0.05774 and 0.04082 for We = 1 and 2, respec-
tively. At Re = 15000, u,/U = 0.03512 and
uc/U = 0.04714 and 0.03641 for We = 0.3
and 0.5, respectively. Thus the present re-
sult at Re = 3000 shows in good agreement
with the onset criterion suggested by Joseph
(1990). However, the result at Re = 15000
does not satisfy the criterion (4). This may be

due to the fact that the present simulation at
Re = 15000 was conducted in a minimal chan-
nel. Thus, a further study is needed to clarify
this issue at high Re.

Kinetic and Elastic Energy Transport Equa-
tions

The first idea of the elastic theory is found
in Tabor & de Gennes (1986). They thought
that polymers in solvents behave as an elastic
spring. If the spring is a linear one, the elastic
energy per unit volume stored by polymers can
be expressed as

k=6 (@) - (&), ), ©

where n is the number of polymer molecules
per unit volume, G is the elastic modulus,
{@?) is the ensemble average of polymer length
squared and the subscript eq denotes the equi-
librium state. Applying the kinetic theory
(Bird et al. 1987) to the elastic theory, one can
obtain the kinetic and elastic energy transport
equations as follows:
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Here kp, = 192, k = 1u i, () = (1)V) [-dV
and V is the total volume of the domain.
Equations (6)-(8) provide the information
about the energy transfer between the poly-
mer and the flow. The energy transfer between
the mean kinetic energy k, and the turbu-
lent kinetic energy k is executed through P.
The energy transfer between the mean kinetic

energy k,, and the elastic energy k. is done
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through P, ,,. The energy transfer between the
turbulent kinetic energy k£ and the elastic en-
ergy ke is done through P.;. The turbulent
kinetic energy k is dissipated by €; and the
elastic energy k. is dissipated by itself.

Drag-Reduction Mechanism

Figure 4 shows the time histories of (P, ),
(Pet) and — (k.) /We at Re=3000. It is seen
that (P ), (Pet) and — (k.) /We are nearly
constant in time in the case of no drag reduc-
tion (We = 1). That is, the energy trans-
fer between the flow and polymer is nearly
steady. However, when the drag reduction oc-
curs (We = 4), the energy transfer becomes
quite unsteady.

We=1 (We =6)
We=4 (We =24)

Figure 4: Time histories of (Pe m), (Pe,t) and — (ke) /We
at Re=3000.

In order to find the reason that unsteady
energy transfer occurs at We = 4, the spatial
distribution of each term in the energy trans-
port equations is shown in figure 5. It is seen
that polymers store and release most of energy
in the sublayer. As the We increases, P, ,, de-
creases in the sublayer while it increases in the
buffer layer. That is, the elastic energy stored
in the sublayer is transported to and released
in the buffer layer when drag reduction occurs.

In order to see that the near-wall elastic
energy is transported to the buffer layer, an
instantaneous field of velocity vectors and con-
tours of polymer elastic energy at an y—z plane
is shown in figure 6. It is seen that the high
elastic energy exists only near the wall when
drag reduction does not occur (We = 1). How-
ever, when drag reduction occurs (We = 4),
the high elastic energy is separated from the
wall and transported to the buffer layer.

It is the relaxation time of the polymer so-
lution that changes the behaviors of P, and
P, ; at higher We. The fluid particle contain-
ing high elastic energy in the sublayer is lifted
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Figure 5: Spatial distributions of Pe m, Pe,t and —ke/We
at Re=3000.

Figure 6: Instantaneous field represented by velocity vectors
and contours of polymer elastic energy at an y — z plane: (a)
We =1 (no drag reduction); (b) We = 4 (drag reduction).

away from the wall by near-wall turbulent mo-
tion. When the relaxation time is short, the
particle releases the elastic energy in the sub-
layer before it reaches the buffer layer. When
the relaxation time is long enough, however,
the elastic energy is delivered to the buffer
layer and released there. Therefore, it can be
concluded that drag reduction occurs when the
turbulent velocity scale is larger than the char-



acteristic velocity of the polymer solution.

CONCLUSIONS

In the present study, direct numerical simu-
lation of turbulent viscoelastic flow in a chan-
nel was conducted to investigate the drag-
reduction mechanism by polymer additives.
The viscoelastic fluid was expressed with the
Oldroyd-B model. The onset criterion for drag
reduction predicted in the present study was
in good agreement with previous theoretical
and experimental studies. In addition, the tur-
bulence statistics such as the mean velocity
and rms velocity fluctuations were also in good
agreements with those in the previous studies.

The kinetic and elastic energy transport
equations were derived to investigate the ef-
fect of elasticity on drag. The polymer stored
the elastic energy from the flow in the sub-
layer and then released again in the sublayer
when the relaxation time was short (no drag
reduction). However, when the relaxation time
was long enough (drag reduction), the elas-
tic energy was transported to and released in
the buffer layer. Therefore, drag reduction oc-
curred when the turbulent velocity scale was
larger than the characteristic velocity scale of
the polymer solution.
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