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ABSTRACT

From large-eddy simulations of unforced
and forced turbulent boundary layer flow
over a surface-mounted fence of height h
(Rep, = 3000) samples in time have been
collected. These samples (snapshots) of the
flow field have been used to carry out three-
dimensional proper orthogonal decompositions
(POD), in order to extract the dominating
spatio-temporal structures of the flow.

The energy balance equation for an indi-
vidual mode can be derived using a Galerkin
projection of the Navier Stokes equation onto
the POD modes. These POD modes have also
been utilized to evaluate the nonlinear energy
transfer terms. It can be concluded that the
(high-frequency) roll-up process in the sepa-
rated shear layer receives most of the energy
from the mean flow and exchanges little en-
ergy with the other modes. In comparison
to this, the (low-frequency) shedding of large-
scale structures from the recirculation bubble
receives larger amounts of energy from the
mean flow and in addition, exchanges one or-
der of magnitude larger amounts of energy with
the 'neighbouring’ modes. This also explains
why, in our flow case, the low-frequency forc-
ing (with Str = 0.08) leads to a much stronger
reduction of the mean re-attachment length
(36%) than the high-frequency forcing (with
Str = 0.60).

INTRODUCTION

We investigated forced turbulent boundary
layer flow over a surface-mounted fence, for
a Reynolds number of Re, = 3000 (based on
fence height, h, and maximum inflow velocity,
Ux). The flow has been manipulated by
time-periodic blowing/suction forcing (with a
forcing amplitude worcing/Uso = 0.5) through
a narrow slot upstream of the obstacle, see
figure 1, and in Orellano and Wengle (2000).
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Figure 1: Computational domain (with forcing slot at X=-3)

In addition to the unforced reference case,
two manipulated flow cases were numerically
simulated by Large-Eddy Simulation (LES):

a first case with high-frequency forcing (Str; =
fih/Us = 0.60) which leads to about 10%
reduction of the mean re-attachment length,
zr/h, and a second case with low-frequency
forcing (Stra = foh/Us = 0.08) which re-
sulted in a 36% reduction of z,/h. Details
of the results can be found in Orellano and
Wengle (2000). In the low-frequency forced
case, large two-dimensional structures are cre-
ated already in front of the flow obstacle. They
roll over the fence (nearly unaffected by the
flow obstacle) and, after the fence, they fill
the entire height of the recirculation bubble,
rolling downstream and thereby entraining a
lot of fluid material from outside. This strik-
ing feature created the motivation to continue
this work with the objectives

(a) to analyse the flows by a Karhunen-Loéve
expansion, also called ”Proper Orthogonal De-
composition” (POD), and

(b) to apply a Galerkin projection of the
Navier-Stokes equation onto these POD modes
to identify and evaluate the energy transfers
which are involed in the energy budget of an
individual mode.



POD OF THE FLOW FIELD

For the PODs we used data sets from about
174000 grid points from the LES (with about
1.67 million grid points) within a subdomain
of the computational domain. This subdo-
main included parts of the incoming turbulent
boundary layer, the complete separated flow
region in front of the fence and the separated
shear layer bounding the long separation zone
after the flow obstacle.

A rapidly converging representation of the
velocity field can be expressed using spatial
functions ¢ (Z) together with temporal coef-
ficients a"(t):
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In the application of the POD used here we
followed the treatment proposed by Sirovich
(1987) ("method of snapshots”) and Aubry
(1991) ("bi-orthogonal decomposition”), see
also in Manhart and Wengle (1993). Here,
we used 6000 samples (snap shots) for each
analysis. The method of snapshots leads to
an eigenvalue problem with the temporal auto-
correlation C(t,t’) as the kernel:
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In this case, C(t,t’) must be evaluated from
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and the spatial modes, ¢7(Z), can be calcu-
luated from
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Eigenvalues.

The time-averaged energy content of a
Karhunen-Loéve mode with mode number n is
represented by the corresponding eigenvalue,
A" The sum of all the eigenvalues is equal
to the total kinetic energy of the flow field or,
excluding mode n=1, equal to the turbulent
energy of the flow. Note, for the evaluation
presented in this paper, the total velocity (not
the fluctuating part only) has been analysed.
Then, in a statistically stationary flow, the first
mode represents the time-averaged flow.

Figure 2 shows the distribution of the eigen-
values over the mode number, n, for the three

flow cases. It is interesting to observe that,
in our flow case, about the first fourty eigen-
values for the fluctuating flow field (n=2 to 41)
decay very slowly from about 1.0 to 0.1, for the
reference case f03,, (Str=0) and for the high-
frequency forced case 03,4 (Str=0.60). How-
ever, in the the low-frequency forced case f03,
(Str=0.08) the first two fluctuating modes
(n=2 and 3) are acting as dominating modes
with significantly larger energy content in com-
parison to the other modes.
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Figure 2: Eigenvalue spectra of the POD modes
for the reference case 0344, and for the forced
cases, f03q4 (Str=0.6) and f03,5 (Str=0.08).
The accumulated energy ratio, e.(k), of the
fluctuating POD modes (k = n — 1) can be
evaluated from

_ k)

and figure 3 shows e, (k) for the three flow
cases. About 2000 POD modes are required
to represent about 99% of the turbulent ki-
netic energy. In equation (5) above, Nj; is the
number of positive non-zero eigenvalues, which
gives a measure for the dimension of the system
of orthogonal modes (the so-called Karhunen-
Loéve dimension). The first 20 modes repre-
sent about 25% of the turbulent kinetic en-
ergy for the reference case and for the high-
frequency forced case, and about 50 % for the
low-frequency forced case.

energy ratio
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Figure 3: Accumulated energy ratio e, (k)
for the reference case f034q, and for the forced
cases, f03,4 (Str=0.6) and f03, (Str=0.08).
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The high-frequency forced case (Str=0.6). and corresponding temporal modes lead to

The forcing frequency (Str=0.60) used in a downstream travelling wave. However, the
this case is the sub-harmonic of the primary roll-up process of the separated turbulent shear
roll-up of the shear layer (Str=1.2). Here, layer seems to be settled at a downstream dis-
the first 20 eigenvalues are close together, and tance of about five fence heights. Therefore,
mode pairs do not necessarily appear with two using a shorter volume of interest for the POD
successive mode numbers. Therefore, the spa- will result in relatively larger energy content
tial and temporal mode pairs representing the of this roll-up process and indeed, in Orellano
roll-up process are connected with the mode and Wengle (1999) it has been represented by
numbers n=3 and n=16, see figure 4 and figure the mode pair 2/3 (even with a much smaller
5. The phase shifts between the two spatial number of snapshots).
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Figure 6: Spatial modes of case f03af— (Str = 0.08)
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Figure 5: Temporal coefficients a™(t) (above) and Figure 7: Temporal coefficients a™(t) (above) and
energy spectra (below) of selected a™(t) energy spectra (below) of selected a™(t)
of the high-frequency forced case (Str=0.60) of the low-frequency forced case (Str=0.08)
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Figure 5 (above) shows the temporal modes,
a"(t). From a Fourier analysis of the first
few temporal modes (figure 5 (below)) it can
be seen that most of the energy of the forc-
ing mode n=3 (and also of mode n=16, not
shown here) is related to the forcing frequency
(Str=0.60). Low-frequency peaks can be ob-
served at Str=0.08 for the mode pair n=4/5.
This mode pair can again be identified with
the ejection of large-scale structures from the
recirculation bubble. Mode 2 reflects the
low-frequency processes already amplified up-
stream of the fence (see details in Orellano and
Wengle, 2000).

The low-frequency forced case(Str=0.08).

In this flow case the spatial mode pair
2/3 represents the low-frequency forcing mode
which dominates the entire flow field, see figure
6 and figure 7. The mode pairs n=4/5 and 6/7
represent ’‘subharmonic’ coherent structures
in the sense that they are connencted with
the subharmonic Strouhal number Str=0.045.
There are also ’harmonic’ coherent structures
to be detected in the flow field (e.g. n=13/14,
not shown here).

The corresponding temporal modes in figure
7 (above) also show the mode pairs mentioned
above. A Fourier analysis of the first four fluc-
tuating modes (n=2 to 5) displays for the forc-
ing mode pair 2/3 a peak at Str=0.08 and for
the subharmonic of this forcing mode a peak
at Str=0.04, see figure 7 (below).

It should be noted here again that in the
forced flow cases the mode n=1 represents the
mean flow. From a closer inspection of the
temporal mode n=1 in figure 5 and figure 7
it can be realized that these mean flow modes
are not exactly constant in time but also oscil-
late with the corrresponding forcing frequency.
The forcing frequency also seems to be super-
imposed onto nearly all the other temporal
modes with higher mode numbers.

GALERKIN PROJECTION OF THE
NAVIER-STOKES EQUATION AND EN-
ERGY TRANSFERS BETWEEN THE
MODES

Substituting the velocity components,
u;(Z,t) (1i=1,2,3), in the Navier-Stokes equa-
tions by their corresponding Karhunen-Loéve
expansion (temporal modes a*(t) and spatial
modes ¢f(Z)) and carrying out a Galerkin
projection of the Navier-Stokes equation onto
the POD modes leads to the momentum
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balance of an individual mode k. From this,
the mean energy budget of such an individual
mode k can be derived:

<E>
dt

< akata™ >

> ; Mkim

l
+ < akfrk >
+del < dkal >
l

Ty + Py + Dy, (6)

Here, the third and the second term on the
right hand side represent the diffusive inter-
actions and the interactions with the pressure
field, respectively. In this paper, we are inter-
ested in particular in the first term on the right
hand side of (6) representing the non-linear en-
ergy transfer between mode k (which receives
energy) and the mode 1 (which provides en-
ergy) with the aid of a transport mode m
(which acts as a bridge over which the energy is
transferred), see, e.g. in Manhart (1996,1999)
and Orellano (1999). Taking into account the
effect of all transport modes, m, leads to the
mean energy flux, Q;, from mode 1 to mode k:

Qrt =) Nkim (7)

< dfata™ >

We are also interested in the mean energy
flux from the mean flow (mode 1=1) to an in-
dividual mode k:

Qk1 =D Tkim
m

< dfala™ >

(8)

As a typical example from our analysis, fig-
ure 8 presents the numerically evaluated fluxes,
Qk1, from the mean flow (mode 1=1) to the
individual modes (k=2,3, ...). It is obvious
from this figure that in the low-frequency forc-
ing case (Str=0.08) these energy fluxes to the
first six (fluctuating) modes are significantly
stronger in comparison to the high-frequency
forced case (Str=0.60).

Figure 9 gives a first explanation for the to-
tally different behaviour of the low-frequency
forced case: in comparison to the high-
frequency forced case (and in comparison to
the unforced case, not shown here) large
amounts of energy are transferred between
modes with relatively low mode numbers only.

Finally, figure 10 compares the individual
energy fluxes between the forcing modes and
the other modes. In the low-frequency forced
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Figure 8: Mean energy flux, Qg1, from the mean flow (1=1) to an individual mode k
left: high-frequency forced case (Str=0.60), right: low-frequency forced case (Str=0.08).

Figure 9: Mean energy flux, Qx;, between mode 1 and mode k
left: high-frequency forced case (Str=0.60), right: low-frequency forced case (Str=0.08).
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Figure 10: Individual mean energy fluxes between the forcing modes and the other modes 1
left: high-frequency forced case (Str=0.60), with forcing mode pair (k=3 and 16),
right: low-frequency forced case (Str=0.08), with forcing mode pair (k=2 and 3)
Note, the ordinate of the figures on the right hand side is one order of magnitude larger

than on the left hand side.
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case the energy fluxes to the neighbouring
modes are about one order of magnitude larger
than in the high-frequency forced case. Note
the different scaling of the ordinate in figure
10(left) and figure 10(right).

CONCLUSIONS

The fully three-dimensional eigenmode de-
composition of the flow fields in a large domain
of interest (enclosing the separation zone in
front of the fence, the total recirculation zone
after the fence, and a region beyond the loca-
tion of mean re-attachment) reveals the major
dynamic processes in the flow, such as the
roll-up of the turbulent shear layer and the
shedding of large-scale structures from the re-
circulation bubble behind the flow obstacle.
In the forced flow cases, corresponding forcing
modes can be identified as pair of modes.

Due to the orthogonality of the spatio-
temporal eigenmodes from POD, the energy
transfers between individual modes (coherent
structures) and from the mean flow (in our
case represented by the first mode) can be cal-
culated separately from the balance equation
of the kinetic energy of an individual mode
(utilizing a Galerkin projection of the Navier-
Stokes equation onto these eigenmodes). The
mean flow delivers energy to all the modes.
However, in the low-frequency forced case the
first five (most energetic) modes receive be-
tween 3 and 5 times as much energy in compar-
ison to the other (less energetic) modes. Also
in this case the non-linear activity between the
modes is one order of magnitude larger in com-
parison to the other flow cases. In addition,
the low-frequency forced case clearly demon-
strates the non-linear energy transfer from 2D
modes to 3D modes. With respect to the ma-
jor dynamic processes in our flow case, it can
be concluded that the roll-up process in the
shear layer receives most of its energy from
the mean flow and exchanges relatively little
energy with the other modes. In comparison
to this, the shedding of large-scale structures
from the recirculation bubble receives larger
amounts of energy from the mean flow and ex-
changes one order of magnitude larger amounts
of energy with the 'neighbouring’ modes. This
also explains why, in our flow case, the low-
frequency forcing (with Str = 0.08) leads to
a much stronger reduction of the mean re-
attachment length than forcing the shear layer
roll-up (with its subharmonic Str = 0.60).
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