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Abstract

The pressure and velocity field of the hyperbolic N.S. system in (x.t) 4 space of a

slightly compressible fluid is constructed asymptotically from a model derived from the N.S. .

The weak solution is for an arbitrary but given initial data with a barotropic relation p(p). It
includes the classical incompressible limit p =1 without assuming "Divergence free vector
velocity in the interior of a closed region" (D. Ruelle) !, Any residual divergence 0. uis,
however, equivalent to a Dirac Impulse of pressure (H. Lamb)™. It is suppressed here through
the homogeneous pressure solution to secure "smooth" nonlinear wave limits observable along its
real trajectory, while leaving integrally small dispersive transients as non-observable in its
complex co-dimensional space. Some unstable ones may emerge remotely above observational
norm bounds as nonlinear waves to interact with neighbours strongly, merging and bifurcating
into singular envelopes to present spiral vortical strings and helical bands of KAM structures
(Fig. 1) even in Hamiltonian or inviscid systems.

The model equation replacing the continuity relation is
laf+(u+V2u)8x—88;—ﬂaiujp(u)=0 (1
to be solved simultaneously with the Bernoulli’s form of the momentum equations for p(u)

along the spiral real trajectory of p(u)defined by u+V?u.The space time similitude and a
local similitude of diffusive dispersion render its asymptotic solutions manageable. via a
polygonal approximation of the complex curvilinear (x.t) space through "quasi-steady evolution

of discrete nonlinear waves followed by their interaction to regenerate a new set of such waves at
remote sites". In the limit of the smallest continuum scales, the physically reasonable "almost
ergodic turbulent measures" are imposed, as suggested separately by Ruelle™ and Smale®™. The

solutions display many features of globally coherent quasi-steady incompressible flows in
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physical space.Their images of evolution in solution phase space will bring out their ordered
envelope as signatures of the transient “diffusive dispersion chaos.” They are the “stationary”
views of their respective local observers; but globally the laminar envelopes of the chaotic
progressive transients in the neighboring traverse complex codimensions under the prevailing
norm bound of the weak solution. They represent different embodiments of physical dynamic
entities f(u), based on the fluid velocity relative to their zero reference state as observed by
different observers in the curvilinear gravitational space. They include all the dynamic and
thermodynamic properties, and their mixing characteristics of the “intermittent” chaotic fields.

To facilitate their analysis under arbitrary but given initial data and observational norm
bound, a similarity parameter is introduced as A=¢€/(M )% , with the peak magnitude M of
fluid velocity relative to a “zero reference state” where u = f(u) = 0 in the nearest far field of the
local observer over the peak, travelling with the phase or group velocity ¢ over the origin. The
model equation (1) is reduced to a similar quasi-steady form for small A and under space-time

similitude £ = 17" (x—ct) €/ as

[(w=c) 0~ A 9%~ 9z ] f(w) =0 2)

with A= o and o corresponding to classical diffusion and dispersion. The state function
f(u) with finite Aare the transitional state of diffusive dispersion as defined quantum
mechanically by the local mean disturbance field over the curvilinear complex space of an “anti-
soliton”. Its asymptotic limit with the same Reference State far up and downstream, is a
symmetric soliton. Both types of stationary local views f(¢& ) are governed by equation (3) as the
integral form of (2) from ¢ to & =cowhere u = f(u) =0.

(0g+4 d.)u="F() (3)

F(u) is nonlinear while (3) is quasilinear, amenable to asymptotic weak solutions for the
evolution of u or f(u) under a specific norm bound separating the nonlinear from the linear
stream. The convergence of the evolution solution of finite values of A to the linear stream is
complicated to be dealt with separately in abstract form. The convergence of A — ooto the
diffusive shock wave was given by Hopf®®. That of 4 —0 with £~ S —0 as the train of
solitons u~ sech * £ of the KDV equation, approaches an open limit under the dubious

proposition of “Benign pass-over” of solitons in strong interaction, however.

Novikov™®

studied the strong interactions of confluent logarithmic vortices and concluded
their “collapse” into “screening similar structures”. The present model elaborates how a nonlinear

dispersive wave introduces a logarithmic singularity to excite chaos in the underlying linear
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chaotic field, possibly to emerge as new nonlinear waves remotely in the complex (i&,7 ) space.

The nonlinear and the linear streams in the weak evolution solution is coupled through their
mutual interaction in the form of scalar velocity potential longitudinally and the vector potential

transversally. Their crossing & = 0+ via complex space presents an image of “almost sphere”. Its

planar sections of Poincaré appear transversally as repeated or continual merging and splitting
(i.e. envelop formation and bifurcation) while spiraling in and out of a “Focal Point”. The
interacting party may “stay” together for a while therein to present an image of an “Antisoliton”
as “Matched half solitons”, possibly with a “flat top” along the real axis. Azimuthally, there will
be a region of logarithmic mean flow profile over an underlying weak chaos to mark the diffusion
— dispersion transition, akin to the logarithmic law of the wall in a turbulent boundary layer, (Fig.
2). Their oblique projections can appear as “horse shoes” or “cat eyes” (Fig. 3, 4), either open or
closed. The ever repeating envelope formations builds up to the complicated and larger
macroscopic structures; while repeating solution bifurcations pushes on the boundary of
continuum images of molecular atomic particle ensembles. There, the charged Columbic forces of
electrodynamics derivable from its vector potential begins to dominate the mass based

gravitation, with their flux line tensions accounting for the excess dispersion ( ) beyond the

similitude as 4 — o, to complete the Maxwell relations. The electronic gas, ex-atomic-nuclei,
could then be “almost” but demonstrably “Ergodic”. Its Bernoulli form of momentum relation
degenerates in some barotropic limit to the relativistic relation. Then and there, the “closure” of
mixing in Navier — Stokes Chaos of all thermodynamic properties can be effected, theoretically.
For macroscopic continuum chaos, the “diffusively linear molecular chaos” may be equally

satisfactory as the lower boundary of the “almost ergodic chaos”.
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Figure "} Mixing m a steady, spatially periadic Sow. Figure (a) shows & typicat Poincart
seciton, with the numbers iadicatiag the period of the istands; Agure (b) thows the typical
theee-dimensional structure of the system, Note that the fuid within the KAM wubes does
Bot mix with the rest of 1he fluid, From Khakhar et al, (1987).
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& Horseshoe of large Reynolds number (Theodorson 1955).

Flgure b' Evoiution of a contour of isovorticity {i.c. , = constant) in the perturbed Kelvin
cat'seye flow (Daniclson 1989).
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