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ABSTRACT

It is demonstrated that the G-equation for
premixed combustion admits a diversity of
symmetries properties, i.e. invariance charac-
teristics under certain transformations. In-
cluded are those of classical mechanics such
as Galilean invariance, rotation invariance and
others. Also a new generalized scaling symme-
try has been established. It is shown that the
generalized scaling symmetry precisely defines
the physical property of the G-equation. That
is to say the value of G at a given flame front is
arbitrary. It is also proven that the generalized
scaling symmetry precludes the application of
classical Reynolds ensemble averaging usually
employed in statistical turbulence theory in or-
der to avoid non-unique statistical quantities
such as for the mean flame position. Finally
a new averaging scheme of the G-field is pre-
sented being fully consistent with all symme-
tries of the G-equation.

INTRODUCTION

Since it was introduced by Williams (1985)
in the context of premixed combustion the G-
equation (see equation (1) below) has stimu-
lated a broad variety of different analytical,
numerical and modelling approaches. Keller
and Peters (1994) have shown that there are
also a variety of different physical effects which
may be included into the formulation such as
local flame stretch, curvature, heat loss and un-
steady pressure changes.

Since most premixed flames of practical im-
portance are turbulent several analytical and
modelling approaches have been developed to
deal with the statistical properties of the G-
equation (Kerstein et al. 1988, Peters 1992,
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Peters 1999). Beside the classical averaging of
G in the sense of O. Reynolds also the spatial
filtering of large-eddy simulation was utilized
e.g. by Im et al. (1997).

In the present paper both analytical and sta-
tistical averaging issues will be discussed em-
ploying symmetry group methods. An exten-
sive overview on the application of Lie group
methods to all kind of equations in the math-

ematical sciences can be found in Ibragimov
(1995/1996).

SYMMETRY PROPERTIES OF THE G-
EQUATION

G-equation formulations
The subsequent analysis is based on the G-

equation in its classical form (see e.g. Williams
1985) given by

oG
where s7, denotes the laminar burning velocity.
Equation (1) models the propagation of an iso-
surface G normal to itself with the velocity sy,.
It is derived from the purely kinematic relation

dx f
dt
between the displacement of the flame front,
the local velocity and the burning velocity nor-
mal to the flame front.

It is important to note that equation (1) has
only a physical meaning at the flame front Gy.
Outside of this iso-surface G is not defined. In
addition any level set different from G has no
influence on the propagation of the iso-surface
of Gy. For this reason any iso-surface apart

= u(mf,t) —}—SL’n(:Bf,t) (2)



from the flame front can be determined by dif-
ferent equations.

The G-equation has to be complemented by
an equation for the velocity vector w. For
the present analysis only constant density flows
will be considered explicitly and hence veloc-
ity and pressure are determined by the Euler
or Navier-Stokes equations

V-u=0,
ou

EJru-Vu:

where the Euler equation is defined according
to the simplification v = 0.
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Symmetries of the G-equation

A symmetry of the equations (1) and (3) is
a transformation which maps these equations
into itself; i.e. we need to determine the trans-
formations f and g which map the original set
of variables

y = [t, =] (4)

to a new set of variables characterized by an
asterisk

and z=[u, p, G|

Yy =[t" =] = f(y, 2),
z" = [u’, p*, G*] = 9(y, 2)
obeying the equivalence
F(y, z,

(5)
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Here F denotes the differential equations (1)

and (3) which do not change its functional form

under the transformation (5). z indicates the
K3

it" derivative order.

In Oberlack et al. (2001) all continuos sym-
metries of (1) and (3) are computed employing
Lie group methods leading to

let*zta :B*=32, U*=u, p*:p,

" = U ay + (O)) (7)

Ty:t" =t+a, * =z, u* = u,
b =p, G'=G, 8)
T3 :t" =e®t, ¥ =Bz, u* = u,
pr=p, G'=G, (9)
T4‘6:t*:t) :1:*=a-:1:, U*:a'u7
p'=p, G"=G, (10)
d
T7—9:t*=t7 w*:$+f(t), u*=’u,+d_{7
d2
p=p-=z I g =g, (11)
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Ty:t* =t, 8=z, u* =u,
p=p+¢(t), G'=G,

where all a; are constants, a-a’ = aT-a =1,
la] =1, f(t) and ¢(t) are arbitrary and ¥ is a
monotonous function of its argument.

(7) may be reformulated as

dF(G)
dG

(7) or rather (13) will subsequently be denoted
as generalized scaling symmetry or relabeling
symmetry of level sets.

It is important to note that the Euler equa-
tions alone admit an extended set of symmetry
transformations comprising two scaling groups
(see e.g. Oberlack 1999, 2000a, 2000b, 2001).
Only due to the velocity scale given by sp,
which is a fixed external velocity which can-
not be scaled the system (1) and (3) admits
one less scaling symmetry. If in addition in
equation (3) v # 0 we find that also the trans-
formation (9) is no longer a scaling symmetry
of the system (1) and (3) since additional phys-
ical scales enter the equations.

It is interesting to note that the modification
of sy, due to curvature, flame stretch or heat
release does not break any symmetry except
for scaling.

As has been mentioned above it is irrele-
vant for the generalized scaling symmetry (13)
whether the velocity u is determined by the
equations for incompressible flow (3) or if the
gas-dynamic equations are employed.

Beside the continuous groups discussed
above the system (1) and (3) admits for certain

sets of parameter finite groups as is shown in
Oberlack et al. (2001).

(12)

G* = F(G) with > 0.

(13)

Derivation of the G-equation from its sym-
metries

In view of averaging and modelling issues
below we repeat some results derived in Ober-
lack et al. (2001). That is the fundamental
form of the G-equation (1) is solely determined
by its symmetries. Presume that the func-
tional form of the G-equation is of the unknown
generic form

H(ta T1,T2,T3, Ga Uy, U2, U3,
Gt7 Gmu Gzza G:I?g) - 0

where the indices of G refer to derivatives with
respect to the specified variables.

In Oberlack et al. (2001) it is rigorously
proven that (1) is uniquely determined from
(14) solely employing the symmetries (7)-(12).

(14)



STATISTICAL AVERAGING CONCEPTS

Symmetries of Reynolds averaged equations

For the purpose of applying the G-equation
approach to statistical quantities in turbulent
flows it is necessary to introduce the concept of
averaging. For any of the flow quantities, such
as velocity or pressure, classical Reynolds av-
eraging leads to equations which have largely
the same transformation properties as the in-
stantaneous equations such as rotation sym-
metry, Galilean invariance and others (see also
Oberlack 1999, 2000a, 2000b, 2001). However,
employing the generalized scaling symmetry T3
which is in effect the only non-linear symmetry
among (7)-(12) leads to statistical quantities
which are non-unique. This will be proven sub-
sequently.

This problem roots in the physical meaning
of G itself. In the G-equation an iso-surface Gg
is introduced as a marker for the geometrical
flame location. However the chosen numerical
value of Gy is irrelevant for the flame position.
This is in effect what is stated by the symme-
try T or more conveniently expressed by (13).
The symmetry simply states that the value
of G can arbitrarily be changed due to the
largely arbitrary function F without changing
its physical meaning namely the flame posi-
tion. From the preceding remarks it is clear
that G' has obviously quite a different physi-
cal meaning compared to any of the other flow
quantities such as uw or p. Since in turbulence
theory and modelling averaging concepts must
be defined this constitutes a major obstacle for
modelling the G-equation.

To quantify what has been said above we
define the Reynolds ensemble average of any
statistical flow quantity Z according to

N—oo

_ 1 XN
ZB) (z,t) = lim (N Z Zn(a:,t)> . (15)
n=1

Any fluctuating quantity Z’ is defined as
7'=27-17. (16)

Implementing the latter definitions of a
mean and fluctuating quantity for the veloc-
ity vector and pressure into the Navier-Stokes
equations (3) we obtain the classical result

V@ =0, (17)
ou
ot

It can readily be shown that any of the sym-
metries (7)-(12) can be re-written as such that

1 -
+(u-V)a=—--Vp+vAu—V - (vu).
p

equation (17) is unaltered by them. As an
example we consider the usual Galilean invari-
ance defined by f = at.

There are two choices of finding Galilean
invariance of (17). Either group analysis is ap-
plied to (17) or we deduce the statistical form
of Galilean invariance from (11) directly. In
the following we will only work out the latter
approach.

Applying the ensemble operator (15) to u
and p in equation (11) we obtain

1

N
A}gréoﬁ;u;: lim NZ(U”+G)’

1 & 1 X
im — Y pi= lim — : 1
R DI PN

Since a is not a statistical quantity it may be
taken out of the sum and hence (18) may be
re-written as

@ =d+a, pP=p (19)

furnished by the transformation properties of
the independent variables. From the latter
we deduce together with the definition of the
fluctuating quantities (16) that the ' and p’
transform under the Galilean invariance as

u" =, pt=yp (20)
It is a short exercise to show that (17) is in-
variant under (19) and (20) extended by the
transformations for the independent variables.
Using the same procedure as for the Galilean
invariance above we can transform any of the
symmetries (8)-(12) excluding G to mean and
fluctuating variables.

Averaging of the G-equation

In contrast the application of the Reynolds
averaging operator to G leads to a contradic-
tion. Suppose we define a mean G-field in the
usual way corresponding to

_ . 1 X
G = lim <-N-n2::1c:n). (21)

Using this definition and applying it to the gen-
eralized scaling symmetry (13) we obtain

_ 1 X
X .
G* = lim <N Z]—"(Gn)> . (22
n=1

Since F may be any non-linear function of its
argument with the only restriction having pos-
itive slope it is impossible to uniquely define a
mean G quantity.
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To interpret things from a application point
of view we suppose to conduct a computation
employing the usual G-equation using an arbi-
trary initial G-field. In addition we denote the
initial flame front at ¢t = 0 by Gg. Letting the
computation evolve the flame front defined by
Gy is uniquely determined for all ¢ > 0 by its
initial position in space. Due to the symmetry
G* = F(G) with 4% > 0 we may think of a
second computation with a new initial G* field
defined by G* = exp(G) where G is given by
the initial G field of the first computation. Of
course, also the iso-surface Gy defining the ini-
tial lame front changes to an iso-surface given
by the value G§ = exp(Gp). The key prop-
erty of the generalized scaling symmetry as
with any other symmetry is that it generates a
new solution for the G-equation. However, the
spatial position of the flame front given by Gg
of the first computation and of Gj of the sec-
ond computation are exactly the same for all
t. Hence, we find that the generalized scaling
symmetry has no influence on the actual flame
position in space.

However, defining a mean G-field employ-
ing the Reynolds ensemble averaging for the
first computation we get G defined by (21). In
contrast, the mean G field of the second com-
putation G* is defined by

1 N
(N nz=:l eXp(Gn)> .

It is clear from the stochastic behavior of G
that

G* lim
N—oo

(23)

G* # exp(Q).

As a result we can immediately conclude that
the two mean positions of the flame fronts are
different. This result is in striking contrast
to the fact that each instantaneous position of
the flames determined by G and Gj have oc-
cupied exactly the same position in space for
all £ > 0. If we would have taken any other
monotonously increasing function instead of
exp again another mean flame position would
have been obtained.

We have to conclude that the classical
Reynolds averaging concept does not lead to a
unique result for the mean G-field. This is also
clear from a physical point of view. The abso-
lute value of the field quantity G itself has no
physical meaning. Instead only iso-surfaces of
G are the physically relevant quantities which
need to be investigated as will be shown sub-
sequently.

(24)
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Stochastic pdf-based averaging of flame sur-
faces

For mathematical convenience we intro-
duce the explicit formulation of iso-surfaces
(A, p,t) where A and p denote a surface
attached coordinate system. Employing this
formalism equation (2) may be re-written as

0 0
T T
(9:13f 8:1:f ’
2NN T

The quantity required to obtain a complete
statistical description of x is the probability
density function (pdf) P. The pdf depends on
x s as sample space variable while the coordi-
nates A and p are “parameters”. Hence the pdf
for arbitrary turbulent flames is represented by
Plx (X, p,t)], where the brackets denote P be-
ing a functional of x;.

The derivation of the transport equation for
P is in complete resemblance to the Fokker-
Planck formalism for stochastic ordinary dif-
ferential equations. The derivation of the func-
tional differential equation for P is given in
Oberlack et al. (2001).

Since solutions for functional differential
equations are usually very difficult to obtain
they are often referred to as unclosed. For the
present purpose a moment approach is intro-
duced to obtain the leading order correlations
of z;.

As an immediate consequence the mean
flame position &(\, p,t) is defined as

///wfpwfdwf

All statistical quantities such as & are denoted
by a hat and the index f is omitted. Ac-
cordingly we may generalize the definition of
the flame brush thickness introduced by Peters
(2000) corresponding to

/// xy — &) Plzs]d’zy. (27)

Apparently £2 is not a space filling quantity but
designates a scalar quantity assigned to every
point on the surface & (A, u, t).

Formally an equation for &(A, u,t) may be
derived by application of the averaging opera-
tion (26) to equation (25). We obtain

d:l:f

T (25)

= ’U;(IBf,t) + 5L

(A, p,yt) (26)

G\ p,t)

(28)



where @ and §pn are defined according to

U= /7/u(wf)P[wf]d3a:f and

Introducing
G’(.’L’,t) = Go (30)

as an implicit representation of the mean flame
front position & we may take the time deriva-
tive of (30) to obtain

En + VG e 0. (31)
It is important to distinguish between the “”
and the “7” quantities particularly in view of
the normal vector to be shown below.
Implementing (28) into (31) we finally find
%—f+a-vé= ~VG-spn. (32)
It should be pointed out that despite the fact
that G' appears to be a field quantity as G for
the instantaneous fields equation (32) is only
physically relevant at the mean flame front Gy.
Though the latter equation is unclosed and
appropriate models have to be introduced it is
apparent that (32) is invariant under the gen-
eralized scaling symmetry (13) if G is replaced
by G, i.e.
S e ) dF
G* = F(G) with e > 0. (33)
This has in fact important modelling impli-
cations. The result mentioned above that the
G-equation may be derived from its symme-
tries may serve as an guideline to model sz n.
The argument is based on the fact that (32)
admits all symmetries (7)-(12) written in the
mean variables. Invoking the derivation of the
G-equation solely from its symmetries we find
that the vector s n can only be proportional to
7 or in other words we find the unique model

VG

vy @Y

sgn=srn with n=—

which recognizes all symmetries of (32). s is
the turbulent burning velocity.

At this point it becomes apparent that if
51, is a constant we have to clearly distinguish

between 7o and 1. The former is the mean of
the normal vector of the instantaneous flame
fronts while the latter is the normal vector of
the mean flame front.

Apart from the latter argument we may also
give a geometric interpretation of the neces-
sity to write syn in terms of 2. The vectors
st and spn need not, in general, be parallel.
However, an interface is invariant to tangential
components in the movement of any point on
it, and so it is completely general to define st
as the inner product, sy = syn-n. In the final
step one can then replace s;n with spn.

In this context it is important to recognize
that the derivation in section is based on the
fact that only first order derivatives of G' and
no derivatives of u have been employed. From
this we may conclude for the modelling of s;.n
that if higher order derivatives of G are em-
ployed more general forms of (34) may be de-
rived.

Extending (34) by including higher order
derivatives of G and the mean velocity there
are only a few basic rules to be obeyed in or-
der to propose a proper invariant model with
respect to the symmetries (7)-(12) written in
the mean variables:

e G may only appear in 71 according to (34).
This ensures obeying the generalized scal-
ing symmetry.

e There may only appear the spatial gradi-
ent of the mean velocity based on grad,
div or rot in order to recognize Galilean
invariance.

e Using proper tensor notation such as
dyadic  products, tensor invariants
e.g. traces, etc. ensures observing the
rotation groups.

e The rotation groups are also observed if
higher order gradients based on grad, div
or rot are applied to 72, the mean veloc-
ity gradient or any tensor product of the
former two.

It is shown in Oberlack et al. (2001) that
similar to equation (28) for & we may also give
an equation for the square of the flame brush
thickness ¢? and related equations.

Also it is shown that certain averaging ap-
proaches published in the literature such as the
one for plane flames by Kerstein et al. 1988 and
Wenzel and Peters (1999) or the flame surface
density approach by Marble and Broadwell
(1977), Pope (1988) and Candel and Poinsot
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(1990) are consistent with all known symme-
tries of the G-equation.

In contrast certain SGS models for LES
such as those by Im et al. (1997) or Weller et
al. (1998) do not uniquely define G for ¢t > 0
by its initial position of Gg alone. This is in
striking contrast to the original property of the
G-equation.

SUMMARY

It is demonstrated that the G-equation for
premixed combustion admits a very broad
variety of of symmetry properties including
those from classical mechanics. Particularly a
new generalized scaling symmetry is obtained
which is of considerable importance for a vari-
ety of different purposes.

It is proven that the generalized scaling sym-
metry is an important ingredient to uniquely
define the basic functional form of the G-
equation. This in fact served as a motivation
to show that the generalized scaling symmetry
cannot under any circumstances be neglected
to derive statistical quantities for turbulent
combustion.

It has particularly be shown that usual
Reynolds ensemble averaging does not
uniquely define mean properties of the G-
equation such as the mean flame position.
The underlying physical reason being the fact
that the value for G is irrelevant and can
arbitrarily be changed without altering the
actual position of the flame front.

A pdf based statistical approach has been
introduced which properly recognizes the im-
portant generalized scaling symmetry. A new
equation for the geometrical location of the
mean flame front has been derived. Modelling
implications of the generalized scaling symme-
try for the unclosed terms have been discussed.
A variety of approaches for premixed turbulent
combustion published in the literature have
been investigated whether they comply with
the generalized scaling symmetry or not.

REFERENCES

Candel, S. and Poinsot, T. 1990 Flame
Stretch and Balance Equation for the Flame
Area Comb. Sci. Tech. 70 1-15

Ibragimov, N. H. 1995/1996 (ed) CRC
Handbook of Lie Group Analysis of Differen-
tial Equations, Vol 1-3, CRC Press

Im, H.G., Lund, T.S. and Ferziger, J H 1997
Large Eddy Simulation of Turbulent Front
Propagation with dynamic Subgrid Models

Phys. Fluids 9(12) 3826-3833

Keller, D. and Peters, N. 1994 Transient
Pressure Effects in the Evolution Equation
for Premixed Flame Fronts Theoret. Comput.
Fluid Dynamics 6 141-159

Kerstein, A.R., Ashurst, W.T. and
Williams, F.A. 1988 Field Equation for
Interface Propagation in an Unsteady Ho-
mogeneous Flow Physical Review A 37(7)
2728-2731

Marble, F. and Broadwell, J. 1977 The
Coherent Flame Model for Turbulent Chem-
ical Reactions Technical Report TRW-9-PU
Project Squid, Purdue University, West
Lafayette

Oberlack, M. 1999 Similarity in Non-
Rotating and Rotating Turbulent Pipe Flows
J. Fluid Mech. 379 1-22

Oberlack, M. 2000a Symmetrie, Invarianz
und Selbstahnlichkeit in der Turbulenz, Habili-
tation Thesis, RWTH Aachen, Germany

Oberlack, M. 2000b On Symmetries and In-
variant Solutions of Laminar and Turbulent
Wall-Bounded Flows ZAMM 80(11-12) 791-
800

Oberlack, M 2001 Unified Approach for
Symmetries in Plane Parallel Turbulent Shear
Flows J. Fluid Mech. 427 299-328

Oberlack, M., Wenzel, H., Peters, N. 2001
On symmetries and averaging of the G-
equation for premixed combustion submitted to
Comb. Theo. Mod. 427 299-328

Peters, N. 1992 A spectral closure for pre-
mixed turbulent combustion in the flamelet
regime J. Fluid Mech. 242 611-629

Peters, N. 1999 The Turbulent Burning Ve-
locity for Large-Scale and Small-Scale Turbu-
lence J. Fluid Mech. 384 107-132

Peters, N. 2000 Turbulent Combustion Cam-
bridge University Press,

Pope, S.B. 1988 The Evolution of Surfaces
in Turbulence Int. J. Engng. Sci. 265 445-469

Weller, H.G., Tabor, G., Gosman, A.D.
and Fureby, C. 1998 Application of a Flame-
Wrinkling LES Combustion model to a Turbu-
lent Mixing Layer Twenty-Seventh Symposium
(Intl.) on Combustion The Combustion Insti-
tute 899-907

Wenzel, H., and Peters, N. 1999 Direct Nu-
merical Simulation of the Propagation of a
Flame Front in Homogeneous Turbulence, In:
17" Int. Collog. Dyn. Ezpl. React. Syst.,
also submitted to Comb. Sci. Tech.

Williams, F.A. 1985 The Mathematics of
Combustion (J D Buckmaster ed) SIAM
Philadelphia 97-131

284





