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ABSTRACT

The decay of turbulence in a wall bounded
domain without mean velocity is investigated.
Direct and Large-Eddy Simulations, as well
as the Eddy Damped Quasi-Normal Marko-
vian closure are used. The effect of the fi-
nite geometry of the domain is accounted for
by introducing a low wave-number cutoff in
the energy spectrum of isotropic turbulence.
It is found that, once the saturation of the
turbulent energy-containing length scale has
occurred, the r.m.s. vorticity is decaying fol-
lowing a power law with a —3/2 exponent, in
agreement with the helium superfluid experi-
ment of Skrbek and Stalp (2000). The tur-
bulent kinetic energy decay exponent is found
to be —2, also in agreement with Skrbek and
Stalp. Using scalings deduced from a simple
analysis, all data can be collapsed into sin-
gle curves for both the fixed scale turbulent
regime and the final viscous period of decay. A
spectral model for inhomogeneous turbulence
is finally applied to the decay of turbulence be-
tween two plates. It is shown that the results
are in agreement with the helium experiment.

INTRODUCTION

In a recent study (Skrbek and Stalp, 2000),
it was experimentally shown that wall bounded
turbulence, generated by towing a grid in a
channel, is decaying following a t™ power law
for the r.m.s. vorticity, with m=-3/2. This
regime is observed after a period of classi-
cal decay of unbounded isotropic homogeneous
turbulence and once the turbulent energy-
containing length scale has reached the size
of the experimental facility (saturation time).
The experiment was performed at the cryo-
genic Lab. of the University of Oregon, in
helium superfluid. In Hej, the (equivalent)
Reynolds number is sufficiently high for the
—3/2 decay regime to be observed before the
final viscous decay occurs. In classical exper-
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iments, this would generally not be the case.
In the same paper, it was also shown that
the —3/2 exponent can be predicted by a sim-
ple spectral analysis, using the spectrum de-
cay model originally proposed by Comte-Bellot
and Corrsin (1966) modified by introducing a
cutoff at low wave-numbers. The correspond-
ing decay exponent for the turbulent kinetic
energy was then predicted to be n = —2.

The idea of introducing a low wave-number
cutoff (or infrared cutoff) in the spectrum to
mimic the fact that in wall bounded flows, due
to the presence of the geometrical boundaries,
the energy-containing length scale must satu-
rate at a size proportional to the wall distance,
was suggested by Bertoglio & Jeandel (1986)
and used in several related studies (Parpais,
1997, Touil et al , 2000). Indeed the in-
frared cutoff was one of the basic ingredients
in the spectral approach of inhomogeneous tur-
bulence followed by the above authors (devel-
opment of the simplified closure for inhomo-
geneous turbulence: SCIT model). The in-
frared cutoff assumption was found to lead to
satisfactory results for wall bounded sheared
turbulence. The high Reynolds number Ore-
gon experiment is now offering an interesting
opportunity to directly test this assumption
against experimental data in a simple situation
where there is no mean velocity gradient.

The purpose of the present study is then
to further investigate the decay of turbulence
with a low wave-number spectral cutoff. The
low wave-number cutoff is therefore introduced
in

1. the EDQNM closure for homogeneous
isotropic turbulence (Orszag, 1970).

2. DNS and LES of isotropic turbulence.
3. the SCIT model (Touil et al , 2000).

In the case of the EDQNM closure, the prob-
lem of the finite size geometry was recently
addressed by Lesieur and Ossia (2000). They



analysed the decay of turbulence at a high
Reynolds number starting with an initial inte-
gral length scale one order of magnitude larger
than the geometrical limit. In the present
study, we use the same kind of approach to
investigate the problem at different Reynolds
numbers as well as to study the influence of
the initial length scale ratios. In the case of
numerical simulations, the problem was ad-
dressed by Borue and Orszag (1995) with an
hyperviscosity and at high Reynolds number.
The periodicity of the numerical box was used
for taking into account the length scale limita-
tion. Existence of a self-similar decay with a
—2 exponent for the turbulent kinetic energy
was shown. In the present study, we use the
same procedure to mimic the finite length scale
effect in DNS and in LES. Reynolds number ef-
fects are also studied.

The results of the closure and those of the
simulations are compared in section IV. They
are also used to check the scaling laws deduced
from the analytical study presented in section
IT. In the last section, the SCIT model is used
to address the same problem in a situation in
which the presence of walls is more realistically
represented.

ANALYSIS AND SCALING

A simple analysis of the problem of the de-
cay of turbulence with a constant length scale
can easily be performed. It is indeed a problem
that can be proposed to students as an ap-
plication of a turbulence course (see Tennekes
and Lumley, 1972, p. 25, problem 1.2). In the
equation for the turbulent kinetic energy

k,t = —£ (1)

assuming that the dissipation ¢ is proportional
to k2 /L with L constant (equal to the dimen-
sion of the containing vessel d) immediately
leads to a decay law with an exponent n = —2
for the turbulent kinetic energy. More pre-
cisely, writing

e=cyu’ /d (2)
leads to the solution
k = 9d%c;? (t — tyo) 2 (3)

in which t,, is a virtual origin. The corre-
sponding decay exponents for the dissipation
and the r.m.s. vorticity are immediately found
to be —3 and —3/2 respectively. Equation (3)
corresponds to the regime in which the energy-
containing length scale is saturated. A simple

way to study the behaviour of the flow before
saturation is to extend the spectrum analysis
of Comte-Bellot and Corrsin by introducing a
low wave-number cutoff at Kj,;=27n/d. This
was done by Skrbek and Stalp (2000). We
reproduce here the simplest version of their
approach (neglecting the influence of intermit-
tency and of the "rounding” of the spectrum
in the vicinity of its maximum). The turbulent
energy spectrum is assumed to be

E(K,t)=0 for K < Kiny
E(K,t) = A K° for Kins <K < K,
E(K,t)=Cei(t)K3 for K> K,

(4)
in which A is supposed to be constant during
the decay and C is the Kolmogorov constant.
Expressing the continuity of the spectrum at
K., evaluating k(t) by wave-number integra-
tion of F(K,t) and replacing in (1) lead to
the classical decay exponent n = —2(21—? in
the regime before saturation, that is to say
before K. has reached K;,;. The approach
also permits to evaluate the time ts4,;* at which
K. = Kipy (saturation time). For s = 2, this
leads to expression (24) in Skrbek and Stalp
(2000), whereas for s = 4, it is found

1 13, -1 7
toat® = S ACHIG] - K075 (9

The energy at saturation can also be expressed.
For s = 4, one obtains

s = (3/2) A Kiy g (6)

After t4:*, saturation of scales occurs and the
spectral analysis leads to recover equation (3),

with co = 2%0"%. Turbulence then decays
with the —2 exponent until the beginning of
the final viscous regime. The characteristic
time ¢, for the beginning of the viscous de-
cay can also be estimated following Tennekes
and Lumley. Assuming that during the viscous
decay the dissipation is

e =cvu?/d® (7)

and defining ¢}, as the cross-over time at which
both (2) and (7) are valid lead to

1272
vey

* * b _ =7/2 —
t =t = oA V2R, ZKGE(8)

The corresponding turbulent kinetic energy is

k=

v = WVZ(—)QKEnf (9)

C2

Note that in Skrbek and Stalp (2000), the
procedure for estimating the viscous scaling is

274



different. However the resulting expressions
only slightly differ. Both approaches lead to
a 1/(vK},;) scaling for t} with a slightly dif-
ferent prefactor.

DNS AND LES COMPUTATIONS

To investigate the decay of turbulence in a
bounded domain using LES and DNS, a sim-
ple way is to use a low wave-number cutoff
in a simulation of isotropic turbulence. This
can be done by taking advantage of the scale
limitation introduced by the periodicity of the
computational domain when using a pseudo-
spectral technique in a periodic box. The wave-
number cutoff is then K;,; = 27/d in which
d is the size of the computational box. In-
deed, such a low wave-number cutoff is present
in all simulations of isotropic turbulence, but
one is usually trying to avoid its effect by per-
forming the computations in a large enough
box. In decaying turbulence, since the integral
length scale is increasing with time, computa-
tions are usually stopped before K, becomes
of the order of K. Instead, we are here per-
forming simulations in a box whose dimensions
are not necessarily large compared to the in-
tegral turbulence length scale and we are not
stopping the runs when the scale limitation in-
duced by the box size begins to take place. The
same procedure was used by Borue and Orszag
(1995) to mimic the finite length scale effect in
their hyperviscosity computations when study-
ing the self similar decay of turbulence.

The code used for the DNS and LES com-
putations is a classical pseudo-spectral code
with second order Runge-Kutta time integra-
tion scheme. All the computations were per-
formed at a resolution of 1282 grid points. As
initial spectrum, we use

E(K,0) = 2.5 1073 ()4 (1 + (££-)?) 717/

(10)
with Kpee = 33 m™! (value corresponding
to a fit of the spectrum measured by Comte-
Bellot and Corrsin (1971) at /M = 42). Note
that the low wave-number cutoff is implicitly
imposed at K;,s = 27/d by the numerical dis-
cretisation to this spectrum which would oth-
erwise behave as K* at small K.

In the case of DNS, the Reynolds number
Rey,, built on the initial integral length scale /g
is equal to 5000. To investigate larger Reynolds
numbers, LES computations were performed.
The subgrid model is the Chollet and Lesieur
(1981) eddy viscosity model, modified to ac-
count for finite Reynolds number effects (see
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d/lo Re;, ~5.10° | Re;, ~5.105 | Rey, ~5.107
6 DNS LES LES
6 EDQNM EDQNM
9 DNS LES LES
9 EDQNM EDQNM
12 Quasi-DNS | LES LES
12 EDQNM EDQNM
24 LES LES
24 EDQNM EDQNM
48 LES
48 EDQNM EDQNM
240 EDQNM

Table 1: The different computed cases.

Chollet (1983) and Parpais (1997)). The spec-
tral viscosity is:

B |[E(K,) . K. K
vi(K) = 0267/ == *f(fn)g(;{—c) (11)

in which K, is the LES wave-number cutoff.
f(K:/Ky) is a low Re correction:

1 e 1+ afe)
PG = A= GEN Y (e ()

(12)
K, is the Kolmogorov wave-number estimated
using K, = (e/v?)Y/4, a is equal to \V/3C/2
and g(KLC) represents the ”cusp” effect :

g(K/K,) =1+ 0.4724(K/K.)*3?  (13)

Use of (11) instead of the original Chollet and
Lesieur model has the advantage of permit-
ting a smooth transition from LES to DNS as
the Reynolds number decreases. This happens
to be the case during the decay of isotropic
turbulence. As a matter of fact, most of the
LES computations presented in the paper are
indeed DNS at the end of their time evolu-
tions. Three values of the Reynolds number
were investigated using LES. The influence of
the finite size of the domain were investigated
by varying d. All DNS and LES computations
are summarized in table 1. The initial integral
length scale [ is used for normalization.

EDQNM COMPUTATIONS

In the case of the Eddy Damped Quasi-
Normal Markovian (EDQNM) closure, compu-
tations are performed using the formulation
of the model for homogeneous isotropic tur-
bulence (Orszag, 1970). The equation for the
kinetic energy spectrum is

E(K,t); = —2vK’E(K,t) + T(K,t) (14)

in which the trasfer term T is expressed using
the classical EDQNM formulation for isotropic



turbulence. The EDQNM characteristic time
scale is given by

(1- e—(TIK+17P+UQ)t)

(nkx +np +19Q)

in which the damping coefficient is expressed

as
K
nK=A,// P2EJP +vK?  (16)
0

as proposed in Pouquet et al (1975). For X\ we

use the classical value A = 0.355. Note that we

have here used (15), instead of its large time
1

Orxpo(t) = (15)

asymptotical form g pg e FTp 70 in
order to permit the comparisons with the DNS
which start with zero third order correlations
at ¢ = 0. The model is applied to wave-
numbers ranging from K, (low wave-number
or infrared cutoff, related to the size d of
the bounded domain by Kp;, = 27/d) to
K, (Kolmogorov wave-number). The energy-
containing range is characterized by wave-
number K.. At time ¢ = 0, the initial con-
ditions are such that K. > Kj,f and the spec-
trum is identical to the one used for the DNS
and LES previously described. The different
cases treated with the closure are summarized
in table I (together with the DNS and LES
computations). Compared to DNS, EDQNM
has the advantage of permitting computations
at higher Reynolds numbers as well as larger
initial values of the ratio K./Kj,s. Compared
to LES, it still has the advantage of permitting
to account for larger K./K;,s. The maximum
value of K./K;ns in LES is limited by the fact
that the filter cutoff must be in the inertial (or
dissipative) range of the spectrum for existing
subgrid models to be reliable.

Note that to relate the results of these
EDQNM and DNS/LES computations to the
experimental situation of a grid generated
turbulent field in a confined geometry, it
has to be assumed that, even if the flow is
bounded by rigid walls, its global behavior can
be accounted for by an isotropic and quasi-
homogeneous description. A similar assump-
tion was made by Skrbek and Stalp (2000)
when applying the spectral analysis to their
experiment.

RESULTS

In Fig. 1, the time evolution of the r.m.s.
vorticity is plotted for the low Reynolds num-
ber case (Re;, = 5000, see table I). Three d/lj
ratios are considered. For d/ly = 6 and 9, the

simulations are fully resolved DNS. The third
case, referred to as quasi-DNS, corresponds to
a low Reynolds number LES that rapidly be-
comes a DNS as time evolves, as the subgrid
viscosity defined by (11) is rapidly decreasing.
At t/tiurn—over = 10, 14 is already smaller by a
factor 100 than the molecular viscosity. Before
t/tiurn—over = 10 , the simulation is considered
a LES and therefore the r.m.s. vorticity is not
plotted. In the log-log plot in Fig. 1, the exis-
tence of a —3/2 power law is clearly observed
for the DNS runs. Before the —3/2 regime, a
less steep decay is observed, although it is dif-
ficult to really detect a power law, saturation
occurring before it could develop. It has to
be pointed out that no attempts were made to
adjust the virtual origin to improve the fit of
the data with a power law. The corresponding

10° At

100 L o d/l, ~ 6 DNS
« d/l, ~ 9 DNS
o d/l, ~ 12 Quasi-DNS

10° 10

urn-over

Figure 1: Decay of r.m.s. vorticity and comparison with
theoritical decay laws. DNS and Quasi-DNS Re;,=5000

time evolutions of the turbulent kinetic energy
are plotted in Fig. 2. Also shown in Fig. 2
are results of two LES runs. The first one
corresponds to a value of d twice larger than
for the quasi-DNS, at the same Reynolds num-
ber, whereas the second one corresponds to d
four times larger and a higher Reynolds. In
the case of the LES, only the filtered energy
is plotted. After saturation has occurred, the
—2 decay exponent is observed. Before satu-
ration, a power law with an exponent close to
—10/7 is clearly detected for the largest values
of d. It can also be observed in Fig. 2 that at
very large time, the power laws are no longer
valid and that the viscous decay occurs. In
Fig. 3, the same results are compared with the
results of the EDQNM closure. The agreement
is good and EDQNM appears to capture the
2 regime in agreement with Lesieur and Ossia
(2000). All these results can be collapsed into
a single curve in the time ranges corresponding
to the two turbulent decay regimes (before and
after saturation) by using the scalings provided
by equations (5) and (6), as appears in Fig. 4.
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Figure 2: Decay of turbulent kinetic energy. DNS and LES
results at low Re number.
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Figure 3: Same as Fig. 2, plus EDQNM results.

Also plotted in Fig. 4 are results of the closure
obtained for a larger value of d (d/ly = 240
and Re;, = 5 x 107). To collapse the data in
the final viscous regime, we use the scaling pro-
vided by equations (8) and (9) (with the value
for the ratio ¢; /co = 10 originally suggested in
Tennekes and Lumley). The results are shown
in Fig. 5. In figure 6, the turbulent kinetic en-
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10° ©0
107 0 ooy
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107 v dfl, ~ 24 Low Re LES oo 1
o, « dfl, ~ 48 Moderate Re LES 1
}8-9 d/l, ~ 240 EDQNM v o 1
1
=10
10" 10°  10% 10" 10° 100 10°  10°  10*  10°
1.

Figure 4: Decay of turbulent kinetic energy normalised by
k;.: as a function of t/t% ,.

ergy spectra are plotted during the fixed scale
decay regime (LES). The compensated spec-

tra are normalised by e%(t), with values of ¢
deduced from the LES by adding the subgrid
flux to the molecular dissipation. It can be
observed that the spectra collapse, which con-
firms the existence of a self similar regime, in
agreement with what was found by Borue and

Orszag (1995). A k% range is clearly present,
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Figure 5: Decay of turbulent kinetic energy normalised by
k%, as a function of t/t}.

as was the case in Borue and Orszag, the main
difference with their results being that their
compensated spectra exhibited a large bump
before the high wave-number cutoff due to the
use of an hyperviscosity.

10 T T T T T

T
L

E(K, K e(ty™

0 10 20 30 40 50 60 70

Figure 6: Normalised energy spectra between oo <
50 and 5000, large Re LES computations.

SCIT MODEL RESULTS

As stated above to relate the results of
the EDQNM and DNS/LES computations pre-
sented in the previous paragraphs to the exper-
imental situation of a grid generated turbulent
field in a confined geometry, it has to be as-
sumed that the global behaviour of the flow
can be accounted for by an isotropic and quasi-
homogeneous description. In order to take into
account more realistically the fact that the low
is bounded by rigid walls, we now use the SCIT
model. The model proposed in Touil et al
(2000) is applied to a flow between two plates,
without mean velocity. In this case, the low
wave-number cutoff is built in the model and
it is no longer necessary to assume that the
flow is behaving as if it was homogeneous and
isotropic. Inhomogeneous transport effects as
well as wall boundary conditions are accounted
for in the model.

In the case of a turbulent field between two
infinite plates, there is only one direction of
inhomogeneity and the model equations can be
reduced to a transport equation for the energy



spectrum

Ey=-2K?E+T+D (17)
T is the non linear transfer term expressed
using EDQNM. D(K,zi,t) is a transport
term typically associated with inhomoge-
neous effects. It is expressed as D
(deffE(K,fEl,t),zl),zl in which desy is a tur-
bulent diffusivity. As for the low wave-number
cutoff, it is now varying locally with the dis-
tance from the wall Kj,; = cyeu/®2, with
Cwall = 0.5 (see Parpais, 1997). The results of
the model are plotted in figure 6 and illustrate
that again the —3/2 and —2 decay exponents
are found.

vonicitl SCIT mode| ——
SCIT model ----»----

0.001

0.0001

1e-05
0.1 1

Figure 7: Decay of turbulent kinetic energy and vorticity
between two plates, SCIT model.

CONCLUSION

Decaying turbulence in a wall bounded do-
main was investigated using DNS, LES and
the EDQNM closure. The turbulent length
scale growth limitation due to the bounds is
repredented by introducing an infrared spec-
tral cutoff. The results show that once the
energy-containing turbulent length scale has
reached the limit, a decay regime with a -2
exponent for the turbulent kinetic energy is
found. The associated exponent for the r.m.s.
vorticity is -3/2, in agreement with the ex-
periment of Skrbek and Stalp (2000). Before
the length scale saturation, a classical homo-
geneous decay regime takes place, whereas at
very large time a viscous regime appears. The
three regimes and the transition between them
are in good agreement with the scalings de-
duced from a simple analysis similar to the one
proposed by Skrbek and Stalp. The fact that
a low wave-number spectral cutoff assumption
leads to correctly reproduce the global be-
haviour of the turbulent decay observed in a
wall bounded experiment provides support to
models for inhomogeneous turbulence relying
on this assumption.
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