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ABSTRACT

The longtime evolution of free decaying
and forced magnetohydrodynamic (MHD)
turbulence is investigated using a shell model
of turbulence. Several series of realizations
with different kinds of initial conditions have
been performed. In most of realizations the
state with highly correlated magnetic and ve-
locity fields arises in several dozens of turnover
times. This aligned state is characterized by
equipartition of magnetic and kinetic energies.
However, realizations with magnetic energy
exceeding the kinetic one throughout the
whole period of simulation have been also
observed. In both cases the energy flux is
practically blocked. The evolution of the
forced turbulence depends not only on the ini-
tial conditions but also on the kind of forcing.
Under constant external force a long (100-200
turnover times) metastable state gives way
to the aligned state and the energy flux also
becomes weak causing an increase of total
energy. Under the force ensuring a constant
level of the kinetic energy at a given scale the
system displays an oscillatory behavior.
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INTRODUCTION

Three inviscid integrals of motion provide
a large variety of scaling properties for MHD
turbulence. The idea of constant spectral en-
ergy flux leads to the Kolmogorov spectral in-
dex 7-5/3”. The concept of the Alfvénic wave
turbulence results in the Kraichnan-Iroshnikov
spectrum ”-3/2”. The third possibility was
suggested by Dobrovolny et al. (1980) and de-
veloped by Pouquet et al. (1986). It implies
high correlation between magnetic and veloc-
ity fields. In such a flow these fields become
almost parallel being subject only to molec-
ular dissipation, because the energy cascade
in this case practically vanishes. This effect
is called alignment and can be quantified by
a correlation coefficient C = Hg/(Ep + Ey),
where He is the cross-helicity, Ey and Ep are
the kinetic and magnetic energies, respectively.
Highly correlated magnetic and velocity fields
yield |C] = 1. In a flow with initially weak
cross-helicity, the alignment is expected to take
place only at a later stage of evolution in free
decaying turbulence and possibly in the forced
one.

The main purpose of the present work is to



follow the longtime evolution of velocity and
magnetic fields in the case of MHD turbulence.
Since this turbulent flow requires high kinetic
and magnetic Reynolds numbers, the possibili-
ties of the direct numerical simulations are very
limited. That is why our investigations are
based on a shell model of MHD turbulence.

MHD SHELL MODEL

The basic idea of any shell model of fully de-
veloped turbulence is to retain only one real or
complex mode (in our case complex variables
Un and B, correspond to velocity and mag-
netic field) as a representative of all modes in
the shell with the wave number k, < |k| <
kn+1, kn = 2", and to introduce a set of ODE,
which mimics the original nonlinear PDE . For
an introduction to shell models the readers are
referred to Bohr et al. (1998).

Here we use the MHD-shell model intro-
duced by Frick and Sokoloff (1998). For 3D
turbulence it can be rewritten as

(d¢ + Re™K2\U, =
?n{8(Un+1Un+2 — Bry1Bry2) —
—2(Up_1Upy1 — Bp_1Bpi1) +
+(Un—2Up_1 — 32—232—1)}+fn-
(dy+ Rm™k2)B, =
(Upt1Bnio — Bry1Upia) +
+(Up_1Bp1 — Ba1Upi) +
+(Un—2Bp_1 — B:L—QU:—-I)}

(1)

iky

T 6

Re is the Reynolds number, Rm = Re - Pry,
is the magnetic Reynolds number, and Pry, is
the magnetic Prandtl number, f, is an external
force. In the free decaying case f, = 0 Vn.

In the limit Re, Rm — oo, equations (1), (2)
retain three quadratic quantities

E =73 (|Ua® +|Bnl?)

Hc =) (UiByp + UsBy)

n

Hp =3 (~1)"k;"|Bal?

n

3)

corresponding to the three quadratic invari-
ants of inviscid MHD flows: total energy, cross
helicity and magnetic helicity. To proceed
further let us note that the nonlinear terms in
(1,2) identically vanish for U, = +B,, and the
spectral energy flux is blocked as well.
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FREE DECAYING MHD TURBULENCE

We performed a simulation (see Antonov et
al., 2001 for details of numerical implementa-
tion) of a complete dynamo problem taking
into account Lorentz force and starting from
a well developed kinetic energy spectrum with
a seed magnetic energy (EFp < Ey). Accord-
ing to Frick and Sokoloff, 1998 the time about a
few dozens of turnover times is expected to be
sufficient to reach the equipartition of kinetic
and magnetic energies.

The simulations made for time scales of
thousands turnover times show that the set
of solutions with similar initial conditions dis-
plays substantially different types of behavior.
In Fig.la one can readily observe three con-
spicuous groups of the trajectories. In the
most numerous group the module of a correla-
tion coefficient |C| quickly increases up to the
unity (the group of the ”right” behavior). The
second group consists of the trajectories with
gradual increment of |C|. These realizations
are expected to reach a correlated state in a
time. In the third group of tracks C becomes
steady close to 0. A sign of alignment is usu-
ally determined by the initial conditions. If a
given trajectory has a low alignment for a long
time, the sign of C' can reverse. However no
sign reversal is observed for a state with high
alignment.

In Fig.1b the time dependence of total en-
ergy for all realizations is presented in log-log
coordinates. This kind of presentation is inter-
esting from the viewpoint of power-law energy
decay. It is clear that no universal time scaling
is available. Most of the time tracks displays a
power-law behavior at the intermediate stage
of evolution. This stage seems to be shorter for
states with rapidly developed alignment (1%
group). The slop of these tracks tends to ”-0.5”
(this slop is shown in Fig.1b by a thick solid
line). For low-correlated states (27¢ group)
this stage is longer and the slop tends to ”-
17 (thick dashed line in Fig.1b). Both slopes
were observed in direct numerical simulations
(Biskamp and Miiller, 1999). The power-low
decay changes to a state with practically sta-
ble energy (horizontal tails in Fig.1b), which
indicates the establishment of alignment. It is
to be noted that realizations with more or less
smooth increase of |C| (Fig.1a) correspond to
the fastest energy decay (Fig.1b).

SUPEREQUIPARTITION

Typical evolution of the kinetic and mag-
netic energies in realizations of the 1% and
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Figure 1: Time evolution of correlation coefficient C (a)
and total energy E (b) with initially weak magnetic field
(Ep < Ey)

37 groups is shown in Fig.2a and Fig.2b re-
spectively. In Fig.2a tracks practically coa-
lesce so that the figure does not show a fast
growth of the magnetic field at the beginning
of evolution. Realizations of the 3™ group
demonstrate the states with abnormally high
level of magnetic energy, which exceeds the
equipartition level. This strongly suggests a
possibility of superequipartition in the dynamo
problem. As such states are infrequent, and
shell models do not contain spatial variables
we may conclude that in real MHD turbulence
superequipartition arises only in spatial regions
that are few and far between. In these re-
gions by some unknown reasons the action of
the Lorentz force is abnormally low (non-forced
configuration) and does not hamper the mag-
netic field growth above the equipartition level.

We have performed one more simulation
with initially high magnetic energy (Ep >
Ey). In this case the onset of alignment is
not evident. However, in a half of realizations
the magnetic energy falls down to the level
of kinetic energy and statistical properties are
similar to those of realizations of 15¢ group ob-
served in previous simulation. In the remaining
half the magnetic energy exceeds the kinetic
one during the whole time of simulation, and
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Figure 2: Typical time evolution of magnetic (thin line) and
kinetic (thick line) energy in realizations of 15¢ (a) and 37¢
(b) group.

the statistical properties are identical to those
obtained in realizations of the 3% group.

FORCED MHD TURBULENCE

An essentially different picture is observed
in the forced turbulence sustained by a con-
stant external force acting on the largest scale
only (see Frick et al., 2000 for details). Start-
ing again with a weak magnetic field, the sys-
tem at the initial evolution stage displays the
same behavior as in the free decaying case, and
a statistically stable state (with Kolmogorov
scaling) seems to be established at a shorter
time. However, longer simulations under sim-
ilar forcing show that after a relatively long
evolution this state is replaced by another one.
In contrast to the initial stage of evolution, the
magnetic field is strongly correlated (or anti-
correlated) with the velocity field. The value of
cross-helicity H¢ is close to its maximal value
(i.e. the correlation parameter |C| is close to
unity). From dynamical viewpoint, high cor-
relations imply strong depletion of nonlinear
terms in shell equations (1, 2) and thus a weak
energy flux. As a consequence, the slope of the
spectral index is expected to be very steep, as
observed in numerical simulations.

As in the free decaying case, the specific be-
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Figure 3: Time evolution of total energy ET = Ey + Ep
and cross helicity He for the MHD shell model with constant
forcing and slightly different initial conditions.

havior of a given solution of the shell model
depends on the choice of initial conditions. At
long times we observed either an unlimited
growth of energy (Fig.3a), or a very long os-
cillatory behavior (Fig.3b).

The observed correlated state strongly de-
pend on the kind of forcing. The long-term
evolution of MHD shell model presented in
Fig.3 demonstrates a drastic variation in the
total energy of the system suggesting a strong
inflow or outflow of the energy. Since our main
focus is a basically isolated system, we pro-
vide conservation of the kinetic energy on the
largest scale by applying a different kind of
force to ensure the constancy of |Up|? at each
time step.

With this kind of forcing most of the time
the total energy oscillates around the mean
value with the small correlation parameter C
(Fig.4). However, one can observe long stages
of high correlation and small energy oscillation.
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Figure 4: Time evolution of (a) total energy E7 and (b) the
correlation parameter C in the “isolated” MHD shell model.
The kinetic energy of the first shell |Up|? is kept constant by
rescaling the amplitude of Uy at every time step.
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