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ABSTRACT

Statistics of passive material lines in homo-
geneous isotropic turbulence are investigated
by the use of direct numerical simulations.
Passive material lines are stretched locally by
the Kolmogorov-scale vortices, and their total
length increases exponentially in time with the
stretching rate of 0.17 (Kolmogorov time)™!
at the Taylor-micro-scale Reynolds numbers
of 56 and 84. It is shown theoretically and
numerically that the commonly used simple
arithmetic mean of stretching rates of many
infinitesimal line elements underestimates the
real stretching rate of passive material lines
owning to nonuniform stretching along the
lines.

INTRODUCTION

It is fundamental in turbulence phenomena
how material objects in turbulence evolve tem-
porally. The advection of material lines in tur-
bulence has been extensively studied by many
authors with relation to vortex line stretch-
ing. Dynamics of material surfaces are also
important in turbulent mixing because they
may be regarded as boundaries between two
kinds of fluids. Furthermore, the advection and
deformation of floating material objects in tur-
bulence can be a powerful tool to visualize flow
fields both in experiments and numerical sim-
ulations.

For the purpose of investigating statisti-
cal aspects of material objects, a set of in-
finitesimal material line (or surface) elements
have been frequently used. For example, the
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stretching rate of material lines has been es-
timated by the simple arithmetic average of
stretching rates of many material line elements
(Girimaji and Pope 1990, Huang 1996). How-
ever, the equi-weight line-element statistics are
different from the line statistics which have ho-
mogeneous weight along material lines. This
is because one-dimensional objects are nonuni-
formly stretched even in a three-dimensionally
incompressible flow. The aim of this paper is
to emphasize important roles of the nonuni-
form statistical weight in the line statistics.

PASSIVE LINE IN TURBULENCE

Governing Equations
We consider a material line advected by a
turbulent flow according as

< au(t) = w(m(1),1). (1)
Here, x; denotes a position of a point labeled
with [ on the line, and u(x,t) is the veloc-
ity of an incompressible fluid at position z at
time t. Equation (1) implies that the line is
advected together with fluid elements. On the
other hand, dynamics of the velocity field are
not affected by the material line. In this sense,
this line is called the passive material line. The
velocity field is governed by the Navier-Stokes
equation,

D 1
—_— t) = — — t
b ulat) = = £ Vp(a,

+vV2u(z,t) + flz,t)  (2)



and the equation of continuity,

V- u(z,t)=0, (3)
where
D 0
—ﬁz~—5¥+u(m,t)-v (4)

stands for the Lagrangian derivative. Here, p
is the constant density of the fluid, v is the
kinematic viscosity, p(x,t) is the pressure and
f(z, ) is an external force, which is introduced
to make turbulence statistically stationary.

Stretching Rate :

A typical temporal evolution of a pas-
sive material line in statistically homoge-
neous isotropic turbulence in a periodic box is
shown in Fig.1, where the Taylor-micro-scale
Reynolds number R) is 84. This is a numeri-
cal result described later. The passive material
line is strongly stretched by turbulence and
spreads very rapidly in the whole box. The
total length L(t) of the line increases exponen-
tially as

L(t) = L(0) exp [ 7t] (5)

where 7 is the stretching rate. Since Batchelor
(1952), many efforts have been made to esti-
mate v theoretically or numerically. We are
also aiming at a correct and precise estima-
tion of the stretching rate. The time evolution
of the total length of passive material lines is
plotted in Fig.2 in a semi-logarithmic scale for
two different Reynolds numbers Ry = 56 and
84. Here, the time is normalized by the tem-
poral average of the Kolmogorov time,

Ty =€ v , (6)

=

with € being the the energy dissipation per unit
mass. The coincidence of the two lines im-
plies that the Kolmogorov similarity should be
well satisfied at these Reynolds numbers. The
stretching rate estimated from the slopes of the
lines is around

v =0.17 (r,)"". (7)

This value is larger, by about 30%, than 0.13 ~
0.14(7) ! estimated from the arithmetic mean
of stretching rates of many infinitesimal pas-
sive material line elements in isotropic turbu-
lence at comparable Reynolds numbers (Gir-
imaji and Pope 1990, Huang 1996). In the
followings, we shall describe the reason of their
underestimation.

Figure 1: Time evolution of a passive material line in homo-
geneous isotropic turbulence. ¢t =0, 1 (7.17,), and 4 (287,).
The Taylor-micro-scale Reynolds number R) is 84.
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Figure 2: Exponential increase of total length of passive
lines. Solid line: Ry = 56; dashed line: 84.

NONUNIFORM STRETCHED WEIGHT

Line Average and Line-Element Average

Suppose that a passive material line consists
of I line segments, each of which has suffi-
ciently short length Al (t) (i = 1,2,---,1)
so that the total length of the line may be ex-
pressed by the sum of Al()(t) as

I o
=Y AW, (8)
=1

Then, the stretching rate defined by (5) is ex-
pressed as

.Léj oae (=Led)

in terms of the stretching rate of each line seg-
ment,

@ 1 dal®
Yo' = G
Al dt

The right-hand side of (9) implies that the
stretching rate 7y of the passive material line is
nothing but the average of line-element stretch-
ing rates v, along the line, that is,

¥ = (Ve )line - (11)

However, the true value vy of the stretching
rate is generally different from the simple arith-

(10)
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metic average,

< Ye >]ine-element =

N -

I .
Y49 (12
i=1

of 7y, over a set of many line elements (the line-
element average), that is,

< Ye >line-element ?é <7e )line . (13)

Note that these two averages are identical, if
all the line segments have equal length.

Stretched Weight Factor

Let us assume, without loss of generality,
that all the line segments have a same length
at the initial time, i.e.,

AlD(0) = Al . (14)

Then, each segment can be treated equiva-
lently in the line statistics at least initially.
However, at a later time, they will generally get
nonequivalent because of nonuniform stretch-
ing, and the stretched weight factor,

Al (¢)
@) (4) =
o (t) Al

—oo| [O@a] )

must be taken into account. Rewriting (9) as

Zzl 1 7§Z) o _ ('Yea >1ine-element (16)
Yizy 0@ (o ’

we can see that the line average and the line-
element average are related with each other
through the stretched weight factor o.

For a later discussion, let us recall that the
arithmetic mean of stretching rates of many
infinitesimal line elements has been often em-
ployed to estimate the stretching rate of pas-
sive material lines numerically (Girimaji and
Pope 1990, Huang 1996). The above discus-
sion, however, warns that all the line elements
cannot be treated with equi-statistical weight,
even though they are always infinitesimal, and
the stretched weight factor is necessary to be
introduced.

In general, the line average of a quantity
g accompanied with passive material lines is
expressed in terms of averages over the con-
stituent line elements as

’Y:

) line-element

<g )line _ ((QU >line—element ) (17)

g )1ine-element



Hence, if g and o are statistically independent
of each other, then the line average and the
line-element average of g are identical. If, on
the other hand, they are correlated (as in the
case of v, and o), these two averages give differ-
ent answers. Since the stretching rate and the
stretched weight factor are expected to be pos-
itively correlated, the line average of -y, should
be larger than the line-element average.

DIRECT NUMERICAL SIMULATION

In this section, we give a numerical evidence
to confirm the theoretical prediction, described
in the preceding section, that the line average
and the line-element average are essentially dif-
ferent from each other and they are connected
through the stretched weight factor o.

Numerical Method

The advection equation (1) and the Navier-
Stokes equation (2) are solved simultaneously
by numerical integration. The Fourier spec-
tral method is employed for spatial derivatives
and the 4-th order Runge-Kutta-Gill method
for time derivatives. The aliasing interactions
are removed by the phase shift method. The
amplitudes of the Fourier components of ve-
locity of wavenumbers smaller than k(= 2.5)
are kept constant, while their phases evolve
temporally according to the governing equa-
tion. This replaces an effective forcing f(x,t)
in large scales. The right-hand side of (1) is
estimated by the 43-point Lagrangian interpo-
lation of the velocity field u(z,t) at the grid
points.

We carried out two kinds of numerical sim-
ulations: The line simulation and the line-
element simulation. In the former, the passive
material line consists of I segments, i.e., I +1
nodes, and the position z(® (t) :=0,1,---,1)
of each node is governed by (1). To keep the
numerical accuracy against the stretching of
the line, the distance between a pair of suc-
cessive nodes are always kept much smaller
than the Kolmogorov length by adding a new
node at the center of a segment as soon as it
becomes longer than a threshold (1.5 times nu-
merical grid, say). This line simulation gives
the line average of any quantity accompanied
with lines. In the latter line-element simu-
lation, we track many passive material line
segments, each of which consists of pairs of
two passively advected points with sufficiently
close distance. In the same way as the line
simulation, the position of a passive point is
advected according to (1). At every numerical

time step, the length of each line segment is
renormalized to be kept as short as the numer-
ical grids. This line-element simulation, which
is essentially equivalent to those simulations
of many infinitesimal passive material line ele-
ments, leads to the line-element average.

We present here numerical results of two
different sets of parameters: The kinematic
viscosities v are 5 x 1073 and 2.5 x 1073, the
resolutions N3 are 1282 and 2563, the Taylor-
micro-scale Reynolds numbers Ry are 56 and
84 on the temporal average, the Kolmogorov
time 7, are 2.0 x 107! and 1.4 x 107! on the
average, respectively. These Reynolds num-
bers are small enough that the smallest-scale
turbulent motions, which play crucial roles in
the stretching of passive material lines, are well
resolved in the both cases.

Numerical Results

In each of the line simulation and the line-
element simulation, we keep the number of
line segments equal to N3 in order to fix the
sample number in averaging. In the line simu-
lation, an end-point of a passive material line
is discarded every time a new node is added to
the line according to the algorithm described
in the preceding section. The line average
and the line-element average of the stretch-
ing rate of passive lines are then estimated by
the line simulation and the line-element simu-
lation, respectively. We repeat each of these
simulations for ten different turbulent flows,
and the mean stretching rates obtained by the
line average and the line-element average are
plotted in Fig.3(a) with thick and thin curves,
respectively. The gray zones denote standard
deviations for the ten realizations. The mean
stretching rates start at the origin, increase in
time, and settle down to constant values in
a later stage. The initial vanishment of the
stretching rate may be understood as follows.
The line-element stretching rate v, may be ex-
pressed in terms of the eigenvalues s;, s2, s3 of
the rate-of-strain tensor S and the angles ay,
ag, a3 between the line segment vector Al and
each of the three principal axes of S as

_AlL-S-Al
== am
= 51 cosaj + 83 cosag + s3 cosag . (18)

If the line segments distribute isotropically in-
dependent of the rate-of-strain tensor, then
(cosai) = (cosag) = (cosag) and the aver-
aged stretching rate vanishes because the fluid
is incompressible (s; + s + s3 = 0). This is
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Figure 3: Stretching rate of passive material lines. Ry = 56.
(a) Line average (thick curve) and line-element average (thin
curve). (b) Line average (thick curve) and weighted line-
element average (thin curve). Gray zones denote the stan-
dard deviations for ten different realizations of turbulence.

the case at the initial time. However, in a
later time, line segments are strongly corre-
lated with the rate-of-strain tensor S, and the
averaged stretching rate does not vanish.

The mean values of the stretching rate av-
eraged over a period (207, < t < 907,) in the
statistically stationary state are

(Y)tine = (0.17 £0.01) 7,71, (19)
and
(Y)line-element = (0.13 £0.01) 7,71 (20)

in the line average and the line-element aver-
ages, respectively. Here, = denotes the tempo-
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Figure 4: Conditional line-element average of the stretching
rate for a given stretched weight factor. Ry = 56, t = 207,.

ral average of the standard deviation for ten
different turbulent flows. As expected, the
line average (19) coincides with (7), whereas
the line-element average (20) with the value
0.13 ~ 0.147, ! estimated before by the simple
arithmetic average of stretching rates of many
infinitesimal line elements. The fact that the
line average is larger than the line-element av-
erage implies the positive correlation between
the stretching rate -y, of the line element and
the stretched factor o defined by (15) (see the
relation (16)). This positive correlation be-
tween v, and o might be intuitively obvious
because o is an integrated stretching rate. In
Fig.4, we plot the conditional line-element av-
erage (Ye|o)line-element Of the stretching rate for
a given value of o at ¢ = 207,. It is seen that
ve and o are indeed positively correlated.

Finally, we calculate numerically the line-
element average (16) taking the nonuniform
stretched weight into account. This weighted
line-element average should retrieve the line
average in principle. For this purpose, we cal-
culate the stretched weight factor o of each
line segment in addition to the stretching rate
in the line-element simulations. The weighted
line-element average (16) thus obtained is plot-
ted in Fig.3(b) with a thin curve and com-
pared with the line average (thick curve). The
weighted line-element average indeed coincides
with the line average in the beginning (t <
57,), but two curves deviate from each other



in later times. The temporal mean of the
weighted line-element average in the statisti-
cally stationary state (¢ > 207,) is

('Y)weighted-line—element =0.18 Tn_l ’ (21)

which is larger than the true value by about
6%. This overestimation of the weighted line-
element average originates from a drawback in-
herent in the line-element simulation. That is,
adjacent line elements separate from each other
quite rapidly. Because of this rapid separation,
a continuous passive line cannot be tracked
by line-element simulations after several Kol-
mogorov times when the mean stretching rate
enters the statistically stationary state. Recall
that the formula (16) is based upon the as-
sumption that many line segments constitute
a complete passive line. Thus, the line statis-
tics can be retrieved only in the early stage of
evolution by the line-element simulation. More
precisely, the line-element simulations overesti-
mate the stretched weight factor o and there-
fore 7, in later times (see Kida and Goto 2001
for more detailed discussion).

CONCLUDING REMARKS

An appropriate numerical method has been
proposed to analyse the statistics of passive
material lines. In order to estimate the average
of any physical quantity along passive material
lines correctly, the lines must be tracked faith-
fully. A good answer cannot be obtained by
those numerical simulations of many infinites-
imal line elements employed by previous au-
thors. As a typical example, we examined the
stretching rate of passive material lines. The
simple arithmetic average over many line ele-
ments underestimates the true value by about
23% (Fig.3(a)) because of neglection of the
nonuniform stretching along passive material
lines. On the other hand, the weighted aver-
age by the stretched factor overestimates it by
about 6% (Fig.3(b)) because of the inaccurate
representation of passive material lines in the
line-element simulations.

It should be stressed again that the dif-
ference between the line average and the
line-element average of the stretching rate is
brought about by the correlation between the
stretching rate v, and the stretched weight fac-
tor o (Fig.4). A passive material line is trapped
by vortices of the Kolmogorov length scale, and
is stretched by the strain around them. The
effect of this trapping may bring the positive
correlation between o and v. From a num-
ber of direct numerical simulations, we have

learned that there exist coherent structures
in turbulence, e.g., the “elementally vortex”
(Kida 2001). However, the computer power
is not strong enough to reveal the Reynolds
number dependence of such micro-scale struc-
tures. Although we have seen that the Kol-
mogorov similarity of the stretching of pas-
sive material lines does approximately hold at
R\, = 56 ~ 84 (Fig.2), there is a possibility
that it would break down due to a kind of
mixing transition of the micro-scale structures
around Ry, =~ 100 ~ 140 (Dimotakis 2000).
These Reynolds number dependence of turbu-
lence structures and the line stretching is one
of the quite interesting near-future problems.
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