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ABSTRACT

A further developments of the LMSE and Langevin
micro-mixing models are proposed in order to
account for the entire spectrum of time scales in the
turbulent flow. The evolution of these scales are
described in the framework of the log-normal
stochastic process. The equation for the scalar pdf
conditional on the given mixing frequency is derived
and numerically solved for each of considered
models in the simple case of the statistically
homogeneous flow. Then, by integration over all
range of the mixing frequency, the unconditional
pdf’s are obtained and compared against DNS data.
It is shown that at late times, the modeled pdf has
exponential tails. The model of the forcing mixing
with injection of unmixed concentrations is proposed
in the last part of the paper.

LINTRODUCTION

Modern models of reacting turbulent flows are often
based on the probability density function (pdf)
method since it treats the influence of turbulent
fluctuations on the chemistry in closed form [1-4].
The challenging problem in this approach is to
describe adequately the molecular mixing in
turbulent medium. From both experimental and
DNS studies it has been recognized that the scalar
mixing scenario is coupled with characteristic time-
scales of turbulent eddies. This has led researches to
propose several models [5-10] that accounts for the
multi-scale nature of the scalar micro-mixing in the
turbulent flow. Our primary motivation for the
present work was to investigate a new approach
which will differ from [5-10] in the following
principal feature: the instantaneous relaxation rate

£(t)

(mixing frequency) a)(t)=7 is treated as a

stochastic  process (g(t) - the instantaneous

dissipation rate and k - the mean Kkinetic turbulent
energy). Following [11,12], this process is modeled
as Ornstein-Uhlenbeck (OU) process [13] for the
logarithm of the normalized relaxation rate

w(t)

)((t)= In——<*. This approach is demonstrated

(@)
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here in its application for two different mixing
models, namely, for the LMSE model [2,14] and for
the binomial Langevin model [15,16]. In the last
one, the binomial stochastic process is replaced by
Wiener process.

I.THE EXTENDED LMSE MODEL
ll.a Denoting < Ia)> as a conditional average at the

given value of @, the extended LMSE model
writes:

dc = —Qa)(c—<c|a)>)dt (1)
where @ is the relaxation rate defined here as a
random process and <cla)> is the mean conditional

scalar (instead of mean frequency <a)> and mean

scalar <C>, correspondingly given in the classical

LMSE). The coefficient €2 is introduced in such a
way that it provides for the known decay rate of

<c'2>, i.e. this coefficient can be determined from

the known mean scalar dissipation <6‘C> within one-
point approach:

= (e, @)
| (ol(lo)-(do))) |

For example, the DNS data [17] can provide for
<€c>. Note that being a functional of @, the

solution of (1) at the given instant  depends on the
all prehistory @(t, ), where #, <t . Complying with

general principles stated by Pope [5], the model (1)
preserves the constant mean concentration for any
random process @ .

ll.b Following [11], the OU-process for Z(l‘)

evolves according to the Ito stochastic differential
equation

dy =—(y—m)T7'dt +2m,T'dW (t) (3)



with W(l‘) as a Wiener process, the mean

m, = <}(>, the variance m, =<(;(—m1 )2> and

the integral time scale 7 which is defined to be

inversely proportional to the relaxation rate
T =C,(@). Similar to [18], the DNS data
conducted in [19] suggested:

m, =0.29InRe, —0.36 over the range of the
Taylor-scale Reynolds number Re, =38 —-93.

ll.c The evolution equation for the joint pdf
P(C, )(,t) can be obtained from stochastic
equations (1) and (3) by standard technique [13]:

Pe28)_ 0.2 e e ()bl 1]
+%[CZ (@)(x—m)Ple 2.0) “)

mZP(c,Z,t)]

This equation can not be simply reduced to the
equation for pdf P(c,t) in the closed form by
integration (4) over } —range. Instead, the equation

for conditional pdf P(cl ;(,t) can be derived, which

in the case of the stationary Gaussian process for ¥
(stationary turbulence) is:

S el
-C, (@) (x-m, )QP(%;”) ©)
+Cl<w>m2%|’j{’t)

Then, the unconditional pdf P(C,t ) can be found
by simple integration:

(x)dx

that accounts for the scalar mixing over all range of
turbulent time scales. It is worth to note that the

knowledge of the joint pdf P(c, Zt ) allows also

Pct IP c|;(, (6)

to obtain the conditional scalar dissipation <8c|c>,

which plays essential role in the problem of
turbulent combustion.

ll.d The equation (5) was numerically solved using
the 3rd order upwind conservative difference
scheme with limiters convection [20]. In order to
control the probability zero fluxes at the phase space
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boundaries, an adaptive grid was specified with a
continuous sliding of boundaries simultaneously
with evolving pdf’s. The initial pdf-distribution in
the concentration space was taken from [17] close to
a double-delta function for all ) — spectrum. The

expression for the variance m, was chosen from

[19] and the value 1.6 was ascribed for the

proportionality constant C , 88 it was suggested in

[20]. The solution was compared against DNS [17]
of decaying scalar field in homogeneous turbulence.
It is shown that at early stages, the predicted pdf’s
relax from the initial double-delta distribution in the
qualitative agreement with the DNS data. The
modeled pdf’s cover the large spectrum of
concentration values. In the Fig. 1, the long-time
behavior of normalized pdf’s is shown. The time is
normalized on the eddy-turnover time [/u. It is
seen that at intermediate times (the late times in
DNS), the pdf’s resemble the Gaussian distribution
as it was observed in DNS. However at large times,
the computed standardized pdf’s expose the
exponential tails around the peak at mean value of
scalar.
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Fig. 1. The standardized pdf’s of the scalar at
different times for K, /k, =1 and Re, =50.

Lines: -—- tu/l=2.78; ——3.47;, — - 4.13; —5.

lll. THE EXTENDED LANGEVIN MODEL

lll.a The extended nonlinear Langevin model writes

dc —aQa)(c—<c|co>)dt+an)c(1—c)dW
a=1+d, (<c|a)> —<czla)> ) (7)
b=d, (<c2|a)> - <c]a)>2

where alongside with notations from II.a and ILb,



the arbitrary coefficient d,, controls the rate of pdf

relaxation. This coefficient neither intervenes in the
decay of the conditional scalar variance

c2|a)>——<c|a)>2J nor in the decay of the

unconditional one. The time-scale constant € is
introduced in the same way as in IL.a. Here, the
distinctions from the Langevin binomial model [15,
16] are:

(1) replacing the mean mixing frequency by the
stochastic process (3) thereby accounting for the
entire spectrum of time scales;

(i1) replacing the stochastic binomial process by the
Winner process; this allows to obtain the pdf
equation in the form of Fokker-Planck equation;

(iii) inserting C(l—c) in the diffusion term; this
provides for the boundedness of the scalar space. Let
us remark that the case d, =0 reduces (7) to the

extended LMSE model (1).

llLb The evolution equation for the joint pdf
P(c, )(,t) can be obtained from (7) and (3) by
usual means [13]. One gets

aL‘(Ca}M=“Q§[(W)e”(c—<CIx>)P(C’ 7o)

+bQ§ciz[<a)>e"c(l _o)P(e 1) )

e le @) Gr-m)Ple. 1)

Zole.fopm Ple. 1)

It can be strictly shown that for the particular case of
W= (co) (this corresponds to P(}() = 5(;{)), the

asymptotic solution of (8) in the normalized
variables is the Gaussian distribution and the

+

coefficient d,, controls the relaxation rate towards
the Gaussian distribution. Similar to Il.c, the
equation for conditional pdf P(C| ;(,t) yields for the
case of the stationary Gaussian process for } :

M =aq Q% [(co) e* (c —<C|Z>)P(Cll’t)]

Ot
+bQ;;C22[<a)>e” c(l—c)P(c|;(,t)] (9)

- o)) P2
azP(c| x t)

+Cl <a)> m, 8;(2
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Likewise (6), the integration of solved P(CI )(,t)

over entire range of time-scales accounts for the
multi-scale nature of the scalar micro-mixing.

lll.c The equation (9) was numerically solved (see,
I1.d) and compared with DNS data of the evolution
of scalar field in statistically stationary,
homogeneous, isotropic turbulence [17]. In [17], the
initial integral length scale of the scalar field is

determined by the ratio kg /k, (kg is the mean
wavenumber in the “top-hat” distribution of the
initial scalar field and k, is the lowest nonzero
wavenumber indicated by the geometrical scale). In

our computations, the mean scalar dissipation <SC>

have been chosen according to kg /k,. The
comparison was performed for two values of
ks /k0 s ks /k0 = 8 (lower initial length scale) and

ks /ky=1 (higher initial length scale). The

coefficient d,, is taken equal to unity d,= 1. Fig.2

shows an example of standardized scalar pdf in the
later period of its evolution. One can see that at large
times, the pdf evolves towards an asymptotic form,
which is Gaussian at small amplitudes with
exponential tails at larger amplitudes. Note that the
later times in the model computation have not been
reached in DNS [17].

10"

F(S;t)=P(C;t)*rms
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Fig. 2. The standardized pdf’s of the scalar at
different times for kg /ky =1and Re, =50.

Lines: — tu/l=16; - - 2.4; —-3.2; — —4; - - 6.4;
—72;—8

In Fig.3(a-e), the modeled pdf’s and those found in
DNS [17] are compared at different times for

kg/ky=1 and Re, =50. It is seen that
predictions are close to pdf’s from DNS.
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Fig. 3(a-e). Comparison of modeled scalar
unconditional pdf’s with those found in DNS [17]

for kg/ky=1 and Re, =50 at five different

times: tu/l =0.22 (a); 1.49 (b); 2.11 (c); 2.78 (d);
3.47 (e)

IV. THE FORCING MIXING WITH THE

INJECTION OF UNMIXED SCALARS

IV.a The last step in the present work concerns the
modeling the partially stirred reactor (PaSR) feeded
by two inlets, i.e. with the injection into reactor of
the pure scalar values ¢ =0and ¢ =1 and with
withdrawal at the same time from it of an equal
amount of the resulting mixture. In this case, the pdf
equation has to be supplemented by an additional
inhomogeneous in — and outflow term. Let us
assume that the probabilities of observing the values
¢ =0 and ¢ =1 in the injection flow are & and

1—a, correspondingly (hereafter & is named as
injection parameter, for PaSR this parameter is equal




to the ratio of the massflow with ¢ = O to the total

injected massflow) , and J3,;

is a frequency of
scalars injection (this frequency 1is inversely
proportional to the residence time). Then this
additional inhomogeneous in — and outflow term in
the joint pdf equations (4) and (8) is written in the
following form:

By la 5(c) P()+ (1-)5(c ~1) P()~ Plc. 2,
and so far, the equations (5) and (9) for the
conditional pdf P(c| Z,t) will be supplemented

also by an additional inhomogeneous forcing term:

B [a 5(C)+ (l - a)é'(c - 1)— P(Cll’t)]'
Then, making use of the method developed in [21], a
g(c| ya ) can be introduced by:

P(dz.1)=[H(c-0)-H(c-1)]g(dz.1),
where H is Heaviside function. The equation for
this smooth function with boundary conditions at
extremities of scalar space can be obtained from (5)
and (9) [21]. Let us write this equation for the
extended LMSE model while similar modifications
can be done for the extended Langevin model, as
well. One ylelds

smooth function

ag(cl;c, o0 [ e* (c—(dz))e(clz.2)]
-C, (w>(l—m1)ai(§'l}‘?‘(’—t) 1y
<y fom L) g

with the following boundary conditions:

ez =0)=a— L=

Q<co>e" <c|,}j>

B
l)=1-«x mj
0= e =)
IV.b The computations of (11), (12) and integration
(6) of the solution g(c| ;{,t) over all ¥ have been

(12)

gldx =

performed in this paper. An example with symmetric
injection of scalars from both sides (@ =0.5) is

given in Fig4 for Re =100, Q =1, C, =1 and

(w)=10".

frequency ratio is taken here as <a)>/ B =

The mean  mixing-to-injection

Initial distribution is chosen as a Gaussian function
with (¢)=0.5 and <c’2> =0.01 for all mixing

frequencies. It is seen that the distribution evolves
towards the stationary solution of a “flying pdf” with
raised wings. Different shapes of the stationary

)]
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solution have been obtained by changing the
injection parameter .

Fig.5 shows that the asymptotic stationary scalar
variance value decreases with increasing of the
mixing-to-injection frequency ratio (other conditions
are the same as in Fig.4 ).

pdf's, P(c)

Fig.4. The evolution of unconditional pdf with
symmetric injection of unmixed scalars at c=0 and

c=1. Lines: — t{@)=0; - - 0.4; —— 0.8; —-L6;
——24;...32;,—4.
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Fig.5. The time evolution of the scalar variance for
the case of the symmetric injection of unmixed

scalars at c=0 at c=1. Lines: (w)/ﬂmj = : —05;
--1;—=2.



V. CONCLUSION

The modifications of the LMSE and Langevin
models are proposed in order to take into account the
multi-scale nature of the scalar micro-mixing in the
turbulent flow. Following the Pope’s and Chen’s
approach [11], this is done by using the log-normal
stochastic process for the mixing frequency. The
models are tested against Esweran’s and Pope’s
DNS [17] of decaying scalar field in homogeneous
turbulence. Distributions are in the good agreement
with the DNS data at intermediate times (normalized
on the eddy-turnover time [/ u ) of the pdf evolution
(the late times in DNS). However, at very large
evolution times, the computed standardized pdf’s
expose exponential tails at large amplitudes which
were not observed DNS [17]. The models are also
extended for the case of the forced mixing with
injection of unmixed scalars at ¢ =0and c¢=1
values (modeling the partially stirred reactor (PaSR)
feeded by two inlets, i.e. with the injection into
reactor of the pure scalar values ¢ = Qand c=1).
Different asymptotic stationary shapes of pdf
distribution have been obtained for different values
of injection parameter and mixing-to-injection
frequency ratio.
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