REGENERATION CYCLE OF VORTICAL STRUCTURES AND
INTERMITTENCY IN HOMOGENEOUS SHEAR FLOW

P. Gualtieri, C.M. Casciola, R. Piva
Department of Mechanics and Aeronautics, University of Rome La Sapienza
Via Eudossiana 18, 00184 Rome, Italy
p.gualtieri@caspur.it

ABSTRACT

We consider a homogeneous shear flow in a
confined box in order to analyze under sim-
plified conditions the interaction of a mean
velocity gradient with the turbulent fluctua-
tions. Despite its geometrical simplicity, the
evolution of this system is characterized by a
cyclic behavior associated with the regenera-
tion of the vortical structures which, in turn,
by the Reynolds stresses, induce bursts in the
kinetic energy. Purpose of the work is to dis-
cuss the statistical properties of the velocity
fluctuations, here analyzed in terms of the ex-
tended self similarity, to understand to role of
the mean shear on the scaling laws of the struc-
ture functions. When the effect of the shear is
prevailing, i.e during the phases of Reynolds
stress activity, the structure functions clearly
manifest a double scaling regime. Theoretical
considerations are discussed to link the double
scaling and the increased intermittency found
in shear dominated flows with respect to ho-
mogeneous isotropic turbulence.

INTRODUCTION

Recent theoretical results for wall bounded
turbulence have shown that the production
of turbulent kinetic energy via the Reynolds
stresses < uv > leads to a radical change of the
statistical properties of the flow. In particular
the classical Kolmogorov-Obhukov similarity
law (RKSH) (Kolmogorov 1962) fails when tur-
bulent kinetic energy production prevails over
inertial energy transfer. A new similarity law
based on the second order structure function
< ef/ 2 >

T < §V2 P2
< € >P/?

< OVP > (1)
has been shown to hold in the near wall re-
gion of a turbulent channel flow (Benzi et.
al. 1999). These findings have been recently
confirmed by experimental data of a turbulent

boundary layer over a flat plate (Jacob et. al.
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2001) and by a DNS of a homogeneous shear
flow (Gualtieri et. al. 2000).

There is a strong evidence that the Reynolds
stresses are crucial in establishing the statisti-
cal properties of shear dominated turbulence.
Under this respect, the homogeneous shear
flow isolates the effect of a pure shear avoid-
ing concurrent effects typical of wall turbulence
induced by the boundary conditions. Here the
mean shear can be regarded as the only feature
leading to the new similarity law (1) and char-
acterizing the dynamics of vortical structures.

Despite the restricted number of control pa-
rameters, the dynamics of the homogeneous
shear flow is rather complex. Globally, the flow
is characterized by a cyclic behavior associ-
ated to the regeneration of vortical structures.
Large fluctuations of turbulent kinetic energy
are induced by the energy transfer from the
mean flow operated by the Reynolds stresses.
Within a single burst, well defined phases ex-
ist where the flow is mainly controlled by the
kinetic energy production mechanism which is
typical of wall bounded shear flows. In the
other phases the inertial energy transfer is the
prevailing process, as for isotropic turbulence.

In these conditions the effect of the super-
position of different statistical regimes may
obscure the understanding of the relevant pro-
cesses. To enhance the two different flow con-
ditions we introduce velocity structure func-
tions conditioned to the instantaneous value
of the shear scale L;. The neat separation of
the scales characterized by turbulent kinetic
energy production from those where energy
transfer occurs is thus achieved to allow for
the extraction of much more clean scaling laws
than previously possible.

REGENERATION CYCLE

We analyze the regeneration cycle of vorti-
cal structures in the homogeneous shear flow
in terms of the interaction between turbulent
kinetic energy and the production term S <
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Figure 1: Time history of turbulent kinetic energy in our
longest calculation up to St = 1200.
uv >.

As previously addressed by Pumir (1996)
and recently confirmed by the authors
(Gualtieri et. al. 2000) the flow reaches a
statistical steady state. Actually, the energy
equation

0

5272+ Spw] = —v[¢?] ()
(square brackets denote spatial average) sug-
gest a possible a balance between the produc-
tion term S[uv] and the dissipative one —v[¢?].
In fact, since the balance is not reached for
instantaneous configurations, we observe large
fluctuations of the turbulent kinetic energy
characterized by a pseudo-cyclic behavior, see
figure 1. A time average of eq. (2) over a period
of time much longer than the typical length of
the bursting cycle corresponds to statistically
stationary conditions.
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Figure 2: Time history of turbulent kinetic energy (solid
line) and Reynolds stressed (dotted line)

In order to relate fluctuations of turbulent
kinetic energy with the production term S[uv]
we have compared these two quantities in fig-
ure 2. We observe that each energy burst is
clearly correlated with a corresponding (neg-
ative) burst in the production term resulting
in a strong injection of energy from the mean
flow. In this phase the flow is characterized
by well organized streamwise vortices shown in
figure 3 at St = 210, i.e. at the beginning of the
energy burst. These structures are mainly re-
sponsible, via a lift-up mechanism, of the large
values of the Reynolds stresses observed in this
phase. The mechanism that leads to the large
fluctuations of turbulent kinetic energy is bet-
ter described by following the time evolution of
the energy spectra (see figure 4). During the
first phase of the burst the increase of turbulent
kinetic energy may be explained in term of lift-
up mechanism and related transient growth.
Initially the contribution to turbulent kinetic
energy is mainly due to the first spanwise mode
(0,0,+£1) described by the linearized equations

di . .
i -S0 — v
) (3)
@ _ —vd
dt ’

that predicts a growing amplitude whenever
S[Re(t)Re(v) + Im(a)Im(9)] < 0. In fact, as
shown by the energy spectra, energy is mainly
injected through the mode |k| = 1. Since the
amplitude of this mode rapidly grows a non
linear mechanism is required to explain the sat-
uration of turbulent kinetic energy. Actually
non linear interactions are responsible for en-
ergy transfer among adjacent Fourier modes.
This is shown by the energy spectra in corre-
spondence with the peak of the burst that is
spread all over the modes of the first decade,
i.e. the energy is now redistributed over a large
amount of modes. The spatial configuration

Figure 3: Vortical structures at St = 210



of the flow is characterized by less organized
structures, (figure 5), which are unable to in-
ject energy in the flow via the lift-up mech-
anism. Hence a decrease in turbulent kinetic
energy is observed. A new cycle starts when
the mean flow acts for a sufficiently long time
to align again vorticity in the streamwise di-
rection.

Our description of the regeneration cycle in
the statistical steady state of the flow is con-
sistent with previous results obtained by Kida
and Tanaka (1994) in the early stages of the
flow development suggesting that the mecha-
nisms of interaction between the mean flow and
the vorticity field are substantially identical.

We like to comment that during the burst-
ing cycle the flow is characterized by differ-
ent vortical structures associated to different
mechanisms of energy production and transfer.
In particular during the growing phase of tur-
bulent kinetic energy, streamwise vortices and
energy production via the Reynolds stresses
are the relevant features of the flow. After-
wards, during the successive phase of energy
decrease the inertial energy transfer prevails
over energy production.

THE SHEAR SCALE

Different vortical structures together with
different mechanisms of energy production and
transfer have been observed during a single
burst in the turbulent kinetic energy.

In order to establish the range of scales
where production of turbulent kinetic energy
is active and transfer occurs, it is useful to
introduce the shear scale Ls. In the homo-
geneous shear flow two typical velocity fluc-
tuations may be considered: fluctuations di-
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Figure 4: Time evolution for the energy spectra during the
burst of the turbulent kinetic reported in the inset
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rectly induced by the mean flow dUs; = Sr
and fluctuations associated with the process
of inertial energy transfer that may be evalu-
ated following Kolmogorov phenomenology as
bu x €/3r/% where € is the mean rate of
energy dissipation per unit mass. The scale
r = L; where 6U; = du defines the shear scale

L =1/ <5 (4)

Clearly in the range of scales L, < r < g,
where l; = ¢3/€ is a typical integral scale, we
have 6U; > du and the flow is characterized
by the production of turbulent kinetic energy.
The effect of the mean shear over the turbu-
lent velocity fluctuations may be characterized
by the non dimensional parameter S* = Sq?/¢
(Lee et. al. 1990) to be interpreted as the ratio

Hence S* measures the extension of the range
of scales where the effect of the mean shear is
relevant.

On the other hand in the range of scales
n K r K Ly, where n is the Kolmogorov dis-
sipative scale, we have du > dU; and the flow
is dominated by the inertial energy transfer
typical of isotropic turbulence. Actually the
extension of this range of scales is measured by
the non dimensional parameter S* = v(¢/5)!/?
(Saddoughi and Veeravalli 1994) to be inter-
preted as the ratio

STATISTICAL ANALYSIS

A quantitative description of the statistical
behavior of turbulence is achieved by analyz-
ing the scaling behavior,if any, of the structure

Figure 5: Vortical structures at St = 219



functions, i.e. the moments of longitudinal ve-
locity increments

< 6VP >=< {[@(Z+F,t) — G(F,1)]- E}P > (7)
where angular brackets denote ensemble aver-
age. For homogeneous and isotropic turbu-
lence Kolmogorov theory (K41) (Kolmogorov
1941) provides a dimensional scaling law in
terms of separation. Starting from Landau
objection (Frisch 1995) a revised form of sim-
ilarity law has been proposed by Kolmogorov
and Obhukov (K62) (Kolmogorov 1962) taking
into account for the statistical properties of the
energy dissipation

< OVP > B3 > pP/3

(8)

where < €7 > denote the ¢ — th moment of the
local energy dissipation averaged over a volume
of characteristical dimension r. Following K62
the scaling exponents of structure functions in
terms of separation are expressed as

¢(p) =7(p/3) +p/3 9)

where the correction 7(p/3) to the pure dimen-
sional scaling p/3 is related to the statistical
properties of the dissipation field. The anoma-
lous scaling (9) is consistent with the intermit-
tent nature of turbulence characterized by the
non Gaussian behavior of the random variable
SV (r).

Clearly scaling laws in terms of separation
can be detected only in experimental facilities
at large enough Reynolds numbers. However
an extension of the range where scaling is ob-
served can be achieved by using the Extended
Self Similarity (ESS) (Benzi et. al. 1995) con-
sidering the third order structure function as
similarity variable

< OVP >c< V3 >%/6 (10)

Experimental results, for homogeneous and
isotropic turbulence, have shown how the rel-
ative scaling exponent (,/(3 is Reynolds in-
dependent and is consistent with the scaling
exponent ¢, directly measured in terms of sep-
aration. For this reason ESS may be used
to compute scaling exponents also in the low
Reynolds number flows achieved in DNS sim-
ulations (Frisch 1995) when a scaling range in
terms of separation is not available.

In principle in the homogeneous shear flow
the effect of the mean shear is relevant at
scales 7 > L, while inertial energy transfer
prevails at scales r < L,. In figure 6 we com-
pare the logarithmic local slope of < §V¢ >
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vs. < §V?3 >, plotted as function of separation,
with the corresponding value in homogeneous
isotropic turbulence. Isotropic turbulence is
characterized by a well defined scaling region
while in the homogeneous shear flow the rela-
tive scaling behavior of structure functions is
less pronounced and confined to a narrower
range of scales. Moreover the scaling expo-
nent substantially differs from the correspond-
ing value in isotropic turbulence in the whole
range of resolved scales. The scaling region
that we observe in the homogeneous shear flow,
is broken for r/n ~ 20 that corresponds ap-
proximately to the position of the shear scale
Lg/n ~ 15 of our calculation.

We like to add that the shear scale, as well
as the Kolmogorov scale, are fluctuating quan-
tities. Hence the two presumed scaling regions
for r > L; and r < Lg are continously chang-
ing with the result of having poor scaling prop-
erties in both ranges.

In order to reduce as much as possible the
fluctuations of the shear scale and the conse-
quent overlapping of the two scaling regions a
conditional statistics is required to apply. The
conditioning criteria has to satisfy some pre-
requisites. First of all a reduction of the fluc-
tuations of the shear scale must be achieved.
Moreover it is useful to consider only flow con-
figurations characterized by strong turbulent
kinetic energy production in order to capture
the scaling region, if any, dominated by the
mean shear at scales r > L;. Following the
considerations related to the regeneration cy-
cle of vortical structure, the flow configurations
in the initial growing phase of the energy are
characterized by turbulent kinetic energy pro-

1 L
1.65 20 20

r/nm

Figure 6: d[log < 6V® >]/d[log < 6V3 >] as a function
of separation in homogeneous isotropic turbulence (dotted
line) and in the homogeneous shear flow (solid line)



duction and by a relatively large value of the
ratio Ls/n oc Q%4 where Q is the mean enstro-
phy. Hence the conditioning criteria may be
formulated as follow

E/Erms >0

(11)
dE/dt > 0

In figure 7 we have compared the conditioned
local slope obtained for different values of o
against the local slope computed using the
whole statistical sample. Two well distinct
range of scales where scaling occurs can now be
identified. For r < Lg we recover exactly the
scaling exponent of homogeneous and isotropic
turbulence while for » > L, the scaling ex-
ponent differs considerably from the previous
value approaching, for larger o, the value ob-
served in the buffer region of wall bounded
turbulent flows (Toschi et. al. 1999). Our find-
ings are in good agreement with experimental
results by Ruiz-Chavarria et. al. (2000) and by
Jacob et. al. (2001) obtained in the context of
a turbulent boundary layer over a flat plate.
‘Also in this case, in the logarithmic region,
where the shear scale falls in the middle of iner-
tial range, structure functions, when analyzed
through ESS show a double scaling regime for
r < Ls and r > L.

In order to get a deeper insight into this kind
of behavior we have checked with the present
data the validity of the RKSH similarity laws.
Namely we evaluate the ranges where the clas-
sical RKSH (Benzi et. al. 1996)

<€Ir)/3>

< € >p/3

< VP >x <oV SPE (12)
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Figure 8: < 6V® > / < 6V3 >2 ys. < §V3 > foro = 1.4
(open circles). The solid line with slope sp = —0.22 gives
the fit in the range r < L.

and the new similarity law (1) hold respec-
tively. In figure 8 we have plotted < §V6 >
/ < V3 >% ys. < §V3 > and its fit in the
range 7 < Lg with a slope s9 = —0.22. This
result is consistent with eq. (12) showing how
in the homogeneous shear flow at » < Lg the
statistical behavior of isotropic turbulence is
recovered in terms of the classical RKSH. In
figure 9 we have plotted < 6V > / < §V2 >3
vs. < 6V3 > and its fit in the range r > L,
with a slope s3 = —0.58. This result agrees
with the new form of similarity law eq. (1)
that is established for r > L; where turbu-
lent kinetic energy production prevails. The
scaling exponents s, and s3 reproduce the well
known statistical properties of the dissipation
field < € >ox 7(q) valid for homogeneous and
isotropic turbulence, e.g. She-Leveque model
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Figure 9: < 6V8 > / < 6V? >3 vs. < §V3 > for o0 = 1.4
(open circles). The solid line with slope s3 = —0.58 gives
the fit in the range r > L.
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(1994), both for r < Ly and r > Lg. This
result suggests that the statistical properties
of the dissipation field are weakly dependent
on the flow configuration. In other words the
different nature of intermittency observed for
r > L is completely described by the new sim-
ilarity law (1) without invoking any drastical
change in the statistical properties of the dis-
sipation field.

FINAL REMARKS

We have analyzed the regeneration cycle
of vortical structures in the statistical steady
state of a homogeneous shear flow by relat-
ing the large fluctuations of turbulent kinetic
energy to the presence of different vortical
structures along the regeneration cycle. Actu-
ally the flow is characterized by phases where
the production of turbulent kinetic energy via
the Reynolds stresses is relevant followed by
phases where energy transfer prevails. When
shear dominated configurations are addressed
we have preliminary evidence of a double scal-
ing behavior of structure functions. These re-
sults are consistent with the presence of the
shear scale L that separates the range of scales
where production of turbulent kinetic energy is
relevant from the range of scales where energy
transfer prevails. Our data are in agreement
with the classical RKSH, eq. (12), at scales
r < Lg and with the new form of similarity
law (1) that is established at scales r > L
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