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ABSTRACT

Direct numerical simulations have been car-
ried out for decaying turbulence in a periodic
box over a relative large range (0.07 to 7) of
the Schmidt number Sc, at a Taylor microscale
Reynolds number of about 50. Several small-
scale statistics of the passive scalar have been
evaluated and compared, when possible, with
those from grid turbulence experiments and
previous simulations of box turbulence. On the
basis of the skewness of the scalar derivatives,
the local isotropy of the scalar field appears to
be more closely satisfied as Sc increases. The
magnitude of the flatness of the scalar deriva-
tive is maximum near Sc ~ 1 and decreases
rapidly as Sc increases. The extremum seems
consistent with the greater dominance of scalar
sheets, especially near Sc ~ 1, under the influ-
ence of the compressive strain rate. A good
collapse of the scalar spectra is observed at
sufficiently high wavenumbers when the nor-
malization uses Batchelor scales. The spectra
support a ki ! behaviour, which is first ob-
served when Sc exceeds 1.

INTRODUCTION

The ability to mix scalar contaminants is
one of the major characteristics of turbulence.
It is therefore not surprising that much effort
has been devoted to studying the mechanisms
by which turbulent mixing occurs. Much of the
impetus for this has come from a wide range
of engineering applications wihch require mix-
ing to take place at as rapid a rate as possible.
Various types of applications can be cited, irre-
spectively of whether the molecular diffusivity
D of the fluid is much smaller or much larger
than the momentum diffusivity or kinematic
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viscosity v of the turbulent fluid, i.e. whether
Sc (=v/D)is < 1lor > 1.

Prior to the advent of the first direct nu-
merical simulations (DNS) of turbulent flows,
the study of the statistics of a scalar, as it
is advected by a turbulent flow, was primar-
ily carried out experimentally. The limitations
of such an approach are well known, espe-
cially when Sc is significantly larger than 1
(e.g. Buch & Dahm, 1996); even when Sc is
of order 1, the complexity of obtaining a rela-
tively complete set of information on the small-
scale scalar field and its interaction with the
small-scale velocity field imposes significant,
if not unrealistic, constraints on the experi-
ment. The advantages of DNS in such a case
are obvious, notwithstanding the restrictions
to relatively low Reynolds numbers and sim-
ple flow geometries. There seems to be little
doubt that future progress will hinge on ex-
ploiting the combined advantages of these two
approaches. Quite a number of direct simula-
tions have now been performed for turbulence
in a periodic box, which either decays in time
or is maintained stationary by forcing at low
wavenumbers; we only refer here to those by
Kerr, (1985,1990) and by Wang et al., (1999)
against which our results have been compared.
The simulations have yielded significant insight
into the statistics of the small-scale scalar field,
its topology and interrelationship with that
of the small-scale velocity field (see Buch &
Dahm, 1996 who review the major results in
the introduction to their paper). Some use-
ful information has also been obtained on the
effect of Sc on the scalar field. The overall
range of Sc thus far considered in numerical
simulations has been too restricted to allow



an accurate assessment of how values of Sc
on either side of 1 influence the small scale
scalar field, in particular its correlation with
the strain rate and energy dissipation rate.
Important theoretical predictions, also
based on local isotropy, of the shape of
the scalar spectrum were made by Batchelor
(1959) for Sc > 1. Batchelor showed that, for
a weakly diffusive scalar, the spectral transfer
depends critically on the least principal rate of
strain and described the spectrum in terms of
v, the average value of the least principal rate
of strain. For Sc > 1, Batchelor predicted that
the three-dimensional scalar spectrum G(k) is

given by
(x)) - Dk?)
G(k) = — (-——- kT exp| — 1
(k) o " (1)
for k > krx. G(k) is defined so that

I°Gk)dk = (62); kg n~! is the Kol-
mogorov wavenumber, 7 = (v3/ (e))l/ * is the
Kolmogorov length scale, (¢) and (x) are the
mean energy and scalar dissipation rates re-

spectively. In the viscous-convective range
(kx € k < k), (1) simplifies to

e

where kg = ng,l is the Batchelor wavenumber

and np = (vD?/(e))'/* is the Batchelor length
scale. The average value of vy is usually identi-

fied with
y= _051 (@)1/2

G(k) = -

(3)

where Cp is the universal (“Batchelor”) con-
stant. Kraichnan (1968) re-examined Batche-
lor’s theory to investigate the effect of fluctua-
tions in the strain rate on the spectrum. The
k=1 behaviour in the viscous-convective range
was unaffected but the Gaussian decay at large
k was replaced by a simple exponential.

Confirmation of the k=1 behaviour has not
been entirely convincing. This is due in part to
the inadequate resolution encountered both in
measurements and numerical simulations when
Sc exceeds 1 but also because the wavenumber
range which corresponds to a k! behaviour
invariably starts at wavenumbers smaller than
predicted by Batchelor. The fact that Sc has
often not been much greater than 1 can be ex-
plained by dimensional arguments which only
require Sc to be greater than 1 for a k™1 be-
haviour to emerge. Unlike the k~%/3 predic-
tion, the k=1 behaviour does not require the
Reynolds number to be large.
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The present DNS data, which cover a signif-
icant range of Sc (0.07 to 7), provide informa-
tion on several aspects of the small-scale scalar
field. Results are presented for the effect of Sc
on the moments of §; (= 90/dz;). We also
compare the 0 spectrum with the k! predic-
tion, given that this behaviour has apparently
not previously been observed in simulations of
decaying turbulence.

The smallest value of Sc considered here is
0.07 close to the minimum used by Kerr (1985)
while the largest value is 7, which allows com-
parison with available measurements in heated
water by Gibson & Schwarz, (1963) and by
Clay (1973). A decaying turbulence simula-
tion has certain advantages over forced sim-
ulations since most naturally occurring flows
are non-stationary or non-homogeneous. The
present results should be comparable to those
obtained in decaying turbulence downstream
of a grid. A comparison with recent measure-
ments (Pr ~ 0.7) obtained in this particular
flow (Danaila et al., 2000; Zhou et al., 2000) is
provided. The spectrum at Sc = 7 is compared
with that of Gibson & Schwarz (1963) [Pr = 7]
also for decaying grid turbulence; note that the
latter flow allows (€) and (x) to be determined
with relatively good accuracy.

NUMERICAL METHOD

A finite difference scheme, second-order in
space and in time, is used with staggered ve-
locities and with the passive scalar at the same
location as u3. Energy conservation in the in-
viscid limit is the main reason why a finite
difference approach produces results of simi-
lar quality to those obtained by pseudospectral
methods (for a comparison between finite dif-
ference and pseudospectral methods, see Chap-
ter 8 of Orlandi, 1999). The present simula-
tions have been carried out for two resolutions
(180% and 250%).

The kinetic energy spectrum, prescribed at
t=20,is

(@ _ 1
E(k,O) = EA_ Wexp |:_
where £, is the wavenumber at which E(k,0)
is maximum, o is a parameter related to the
low wavenumber behaviour, (¢?) = (u;u;)/2
is the mean turbulent kinetic energy, here set
equal to 1.5 and A = [;°k° exp(—ok?/2)dk.
The simulation has been performed in a cubic
box of size equal to 27; the Reynolds number

Re = (2(q2)/3)1/2/1/27r, is 3000 for the coarse



simulation and 3500 for the finer simulation.

For the passive scalar, the simulation was
initiated with a random phase spectrum of the
same shape as that of (¢?). A certain time
interval or relaxation period is needed before
(¢?) and (6?) display power-law decay rates.
The velocity and passive scalar fields at ¢ = 10
are used as the initial conditions for the calcu-
lation of a subsequent 10 time units, the scalar
transport equation being solved for each value
of Sc. The coarse simulations were run at nine
values of Sc (= 0.07, 0.15, 0.3, 0.45, 0.7, 1.5,
3, 4.5 and 7), the fine for six (Sc = 0.07, 0.3,
0.7,1, 3 and 7).

COMPARISON WITH EXPERIMENT AND
OTHER SIMULATIONS

Figure 1: Comparison with measured spectra of 6 at
Sc = 0.7; symbols DNS (e 1802, #250%), lines measured at
( Ry =..———= Ry =..).

Before discussing the dependence of the pas-
sive scalar on Sec, it is worthwhile comparing
some basic statistics of the computed velocity
and scalar fields with those obtained from pre-
vious experiments and simulations of the same
type of flow. Ideally, the comparison should
be made at the same Rj, Sc and initial con-
ditions. It is virtually impossible to comply
with all these requirements. Here, we restrict
ourselves to a comparison with measurements
downstream of a grid-heated mandoline (Zhou
et al., 2000; Danaila et al., 2000) at approxi-
mately the same R) (~ 50) and Sc (~ 0.7). In
this flow, (€) and (x) are known to relatively
good accuracy, using

@ =-S5 00 =—S@). @

where d/dt is replaced by Ud/dz;. Different
velocities of the oncoming stream were used; at
each velocity, R) became approximately con-
stant for z;/M > 40 (M is the grid mesh
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size). Figure 1 shows the Kolmogorov normal-
ized spectra of 8 compared with those from
the present simulations with the two resolu-
tions. In each case, there is good agreement
over a substantial portion of the dissipative
range. The computed spectra extend to val-
ues of k7 in excess of 1 whereas the measured
spectra extend to significantly lower wavenum-
bers.

Wang et al. (1999) performed several forced
and decaying turbulence simulations; in each
case, they evaluated several global quantities
related to the velocity and scalar fields. Since
they only considered to Sc ~ 1 a higher value
of Ry (~ 68) was possible. The integral length
scales for the velocity and scalar are related to
the three-dimensional energy spectrum FE(k)
and three-dimensional scalar variance spec-
trum G(k) via the expressions

3 E(k) o G(k)
=g ] TE o b= gy [ S

where [E(k)dk = (¢?)/2 and [5° G(k)dk =
(6?). The Taylor velocity microscale and cor-
responding scale microscale are given by

B e (T

©« “ Q
,<
\ -
r;\ . a
.
) ] °
i 5] " .
“~ o - s °®
S0 8 "
x o
a
8
o
8
10" 10° 10"
Sc

Figure 2: Effect of Sc on integral length scale ratios and
Taylor microscale ratios. (o 1803, o 2503,¢ = 20, & t = 30);
open ), closed L.

Figure 2 confirms that the integral length
scale L depend much less on Sc than the hybrid
scale A\. The magnitude of the two ratios seems
unaffected by the resolution. The dissipation
time scale ratio R = ((¢%)/(€))/((6?)/(x)) may
also be interpreted as a measure of the life-time
of the energy containing eddies relative to that
of the scalar fluctuations. Figure 3 indicates
that simulations show that this ratio depends
on Sc; since (g%)/(€) is unchanged, the life-
time of the scalar fluctuations appears to be



sensitive to Sc. In the grid turbulence exper-
iment of Zhou et al. (2000), R varied slightly
with z;/M; the average value over the range
20z1/M80 is about 2.0, in close agreement
with the present values. The coarse simula-
tions show a decrease of R with Sc for Sc¢ > 3
and this behavior depends on the insufficient
resolution of the dissipating range. The closed
circles are obtained by the fine simulations at
= 20 and even in this case R reaches an
asymptote. To fully resolve the dissipation
range, the simulations for Sc = 0.7 and Sc =7
were continued for another ten time units. Fig.
3 shows that, in this case, there is a shift of the
same amount and then it can be asserted that

the asymptote is realistic.
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Figure 3: Effect of Sc on R, the time scale ratios (o 1803,
0 250%,¢ = 20, & t = 30); crosses Wang et al..

ISOTROPY AND DEPENDENCE OF
SMALL-SCALE PROPERTIES OF THE
SCALAR ON SC
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Figure 4: Effect of Sc on the scalar variance of passive scalar
gradients solid symbols 1803, open symbols 250% square i =
1, diamonds ¢ = 2, triangles 7 = 3.

For lack of space we are not presenting the
check of local isotropy for the velocity field.
To look in more detail at the properties of the

scalar field it is interesting to analyse the prop-
erties of the statistics of 6 ;. In Fig. 4 it turns
out that the variances of 6 ; are approximately
equal and that these grow linearly with Sec.
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Figure 5: Effect of Sc on the skewness of the passive scalar
gradients; legend as figure 4.

The magnitudes of Sy ; are plotted in Flgure
5 as a function of Sc. The non-zero magni-
tude of Sy, is usually interpreted, at least for
Sc ~ 0.7, as emphasizing the persistent de-
parture of the scalar from local isotropy. In
most flows, Sy, is of order 1. A notable ex-
ception is grid turbulence in which values very
close to zero have been reported. The present
DNS value (~ —0.2) at Sc = 0.7 is small com-
pared with the values obtained in shear flows
(e.g. Tavoularis & Corrsin, 1981 found that
Sp, =~ —0.95 and Sy, ~ 1.1 in a uniform shear
flow with a uniform mean temperature gradi-
ent). For the grid turbulence experiment of
Zhou et al. (2000), S, ~ —0.18 at 1 /M =~ 40.
At Sc = 0.7, the magnitude of Sp, is greater
than that of Sp, or Sp;. Sp, is largest at
Sc ~ 0.07.

As Sc increases, the three magnitudes be-
come comparable and are negligible for Sc =7
Given that the skewness of 6; is a relatively
sensitive indicator of local isotropy, the trend
of the data in Figure 5 suggests that local
isotropy may be closely approached when Sc
is sufficiently large.

The non-Gaussianity of the pdf of 6;, as
reflected by the magnitude of Sy ;, leads to flat-
ness factors of 6 ; which are mgmficantly larger
than the Gauss1an value of 3. Figure 6 indi-
cates that the three flatness factors are nearly
equal, independently of Sc, for the coarse sim-

. ulation and that there is a weak anisotropy by

248

increasing the resolution, this was found even
by Kerr (1985). Both simulation in any case
show that Fp, is maximum near Sc = 0.7. The
implication is that the more intense gradients
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Figure 6: Effect of Sc on the flatness of the passive scalar
gradients; legend present results as figure 4, crosses Wang et
al. inverted-triangles Kerr.

occur near Sc ~ 0.7.

The relatively sharp increase of Fy, at
small Sc is consistent with the trend implied
by Kerr’s (1985) values. The smaller values
obtained by Kerr most probably reflect the
smaller value of Ry (~ 40) and poorer reso-
lution of his forced simulation.

1.6
L]
1.47 o
Q [ ]
Q12 S
[ ] [ ]
¢ . 8 °
1.0
+
B —
10" 10° 10"
Se

Figure 7: Effect of Sc on 3 e 1803, 0 2503 x Wang.

It is of interest to examine whether other
small-scale quantities also exhibit an ex-
tremum near Sc ~ 1. Kerr (1985) and Wang et
al. (1999) considered the ratio 8 between the
production of enstrophy and the production of
(6%), or sometimes palinstrophy, viz.

ﬂE ( (wiszij) )/< _<9,i9,j3ij) ) )
(w?)(sij85i) /2 (02) (sijsji)'/?
Figure 7 shows that 8 is minimum near Sc ~

0.7, implying that the production rate of (93)
is largest near Sc ~ 0.7

SCALING OF SPECTRA

As noted in the introduction, the scaling of
¢9(k1), the one-dimensional spectral density of
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Figure 8: One-dimensional scalar spectra in Batchelor scal-
ing at different Sc for the 250% simulations; o Sc = 0.07,

Sc = 03, ———— Sc = 0.7, === Sec = 1,
—=-— 8¢ = 3, —-— Sc = 7, the straight line has the
k—1 slope.

the scalar, for arbitrary values of Sc is an is-
sue which has received quite a bit of attention.
For Sc ~ 1, Kolmogorov-like scaling is ap-
propriate, as shown in Fig. 1. Gibson (1963)
pointed out that, irrespectively of Se, the high
wavenumber part of the spectrum should scale
on the Batchelor scales 85 = ({x)/v)'/? and np
The spectrum ¢7 (ki), where the superscript
“4+” denotes Batchelor normalization, should
therefore depend only on k" over a range of
scales where both v (or perhaps more rele-
vantly ) and D are important. The present
distributions of ¢, (ki"), shown in Figure 8,
indicate a collapse, at sufficiently large ki
Closer inspection of the high wavenumber por-
tion of these one-dimensional spectra, as high-
lighted by the linear-log plot reveals that this
scaling remains valid up to k¥ = 1 for the dif-
ferent simulations. We would like to point out
that by increasing Sc the simulation had to
evolve for a sufficient long time in order to get

a well developed dissipating range. The k; 17/3
behaviour predicted by Batchelor et al. (1969)
for S¢ < 1, is not observed in the present
Sc = 0.07 distribution.

Figure 9 shows a comparison, for Sc = 7,
between the present spectrum and the temper-
ature spectra measured by Gibson & Schwarz
(1963) in decaying grid turbulence and Clay
(1973) in the wake of a sphere. As the au-
thors noted, they do however suffer from in-
sufficient spatial resolution; this can be indi-
rectly inferred from the comparison with the
present spectrum. It is also the likely reason
why a kK ! range is less evident in the Gibson
& Schwarz spectrum than on the present dis-
tribution. Strictly, the previous dimensional
arguments for a k; ' behaviour do not require
R) and Pe to be large (this was also hinted at
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Figure 9: One-dimensional scalar spectra in Batchelor scal-

ing at Sc = 7 for the 2503 simulations ( t = 20, dashed
t = 30), e Gibson, saClay, the straight line has the k£~ slope.

by Batchelor who stressed the role of ¥); Ry is
indeed small for all the data in Figure 9.

CONCLUSIONS

The present direct numerical simulations of
decaying box turbulence have provided useful
insight into the effect of the Schmidt number
on the behaviour of the small-scale scalar fluc-
tuations. Perhaps the most significant obser-
vation relates to how Sc affects the isotropy of
these fluctuations. Since the small-scale veloc-
ity field is approximately isotropic, one might
expect the small-scale scalar field to behave
similarly, in the absence of any extraneous fac-
tors such as the presence of a mean scalar gra-
dient. Indeed, second-order and fourth-order
moments of §; conform closely with isotropy,
almost independently of Sc. This is not the
case for third-order moments which seem to
conform better with isotropy at the largest Sc
(= 7). It is now well established that the
skewness of 0; is a more sensitive indicator
of isotropy than even-order moments of 6;.
The approach towards zero of Sy, as Sc in-
creases may reflect the increasing gap between
the Batchelor length scale and the Kolmogorov
length scale.

The scalar spectra exhibit a modest k! be-
haviour when Sc exceeds 1. The present decay-
ing turbulence simulation allows direct com-
parison with grid turbulence measurements
(Pr = 0.7 and 7), notwithstanding the like-
lihood that the initial conditions may differ
somewhat in each case. Quite reasonable
agreement was obtained for Pr = 0.7, for the
scalar spectra. For Pr = 7, there is reason-
able agreement with the measured tempera-
ture spectrum (Gibson & Schwarz, 1963; Clay,
1973) allowing for the fact that the spatial res-
olution is poorer for the measurement than in
the simulation.
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