AN EMPIRICAL MODEL TO ACCOUNT FOR DIFFERENCES BETWEEN
LONGITUDINAL AND TRANSVERSE STRUCTURE FUNCTIONS DUE TO
ANISOTROPY

Giovanni P. Romano, Stefano Bisceglia
Department of Mechanics and Aeronautics, University “La Sapienza”
Via Eudossiana 18, 00184 Roma, Italy
gp.romano@dma.ing.uniroma.it

Robert A. Antonia, Tongming Zhou
Department of Mechanical Engineering, University of Newcastle
NSW 2308, Newcastle, Australia
meraa@alinga.newcastle.edu.au

ABSTRACT

In this paper the difference between scaling
exponents derived from longitudinal and transverse
structure functions is examined. Several flow fields
are considered to relate such a difference to the
Reynolds number (which reflects the small-scale
anisotropy) and to the ratio between longitudinal and
transverse velocity fluctuations (which depends on
the large scale anisotropy). The experimental results
confirm that the difference between longitudinal and
transverse scaling exponents changes as a result of
the previous anisotropies. It decreases with the
Reynolds number and increases as the ratio of the
rms values of the velocity fluctuations in the
longitudinal and mean shear flow directions. The
experimental results are in reasonable agreement
with predictions from an empirical model based on
the small and large scale asymptotes of structure
functions.

MOTIVATION OF THE PAPER

It is well established that moments of the
increment between velocity fluctuations at two
points (or velocity structure functions, SF) in a high
Reynolds number turbulent flow scale, albeit
approximately, as a power of the separation between
the points (Frisch, 1995). According to the local
similarity hypothesis of Kolmogorov (K41), the
scaling exponent increases linearly with the moment
of the SF. In reality, the increase is non linear due to
fluctuations of the energy dissipation rate, a
phenomenon referred to as small scale intermittency.
These departures from K41 have been extensively
reported for longitudinal structure functions (LSF),
that is for the statistics of the differences of velocity
components along the direction of separation
(Sreenivasan and Antonia, 1997).

Less attention has been given to transverse
structure functions (TSF) or differences of velocity
components along directions orthogonal to the
separation. For locally isotropic incompressible
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turbulence, the second-order LSF and TSF are
related by (Frisch, 1995)
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where the asterisks denote normalisation by the
Kolmogorov length scale (n=(v*/<e>)"*, where <¢>
is the mean turbulent energy dissipation rate) and the
Kolmogorov velocity scale (ux=(v<e>)"*). In the
inertial range (IR) (n<<r<<L, where L is the integral
length scale), structure functions are expected to
scale as 75p. Inserting such a scaling into the
previous relation, the equality between second-order
exponents for LSF and TSF is derived. Although
comparable results have yet to be established for
p#2, extrapolation of the previous equality leads to
equivalence between the absolute magnitudes of the
LSF and TSF exponents. This result is not supported
by the majority of the available experimental and
numerical data (Boratav and Pelz, 1997; van de
Water and Herweijer, 1999; Zhou and Antonia,
2000). The difference is about 20% for p=4 and 40%
for p=8. This inequality clearly requires further
investigation, especially in the context of improving
small-scale  turbulence  modelling.  Possible
explanations, not necessarily unrelated, for this
inequality are (i) the anisotropy of the flow, (ii) the
Reynolds number, (iii) the initial and boundary
conditions, (iv) the intermittencies affecting LSF and
TSF (which may be inherently different).
Possibilities (i) and (iii) give different injections
of energy at the large scales which could, in turn,
affect the IR. This could explain why there is
qualitative agreement for the inequality between
longitudinal and transverse exponents as well as
significant disagreement with regard to its
magnitude. Regarding (ii), there is a tendency for the
IR to contract and eventually disappear as the
Reynolds number is reduced (Pearson and Antonia,
2000). Possibility (iv) has been considered, in



particular through differences in the scaling of the
locally averaged energy dissipation rate and of the
enstrophy, but the differences (2% for p=4 and 6%
for p=8) are much smaller than measurements
(Antonia, Zhou and Zhu, 1998).

The aim of the paper is to investigate the
difference between LSF and TSF in the context of
the anisotropy of the flow, the initial and boundary
conditions and the Reynolds number. These are
addressed by comparing results in several flows (jets
and wakes) at different values of the Reynolds
number and of the ratio u’/v’ (where the prime
denotes the rms value). The former is used to
investigate the effect of small scales on structure
functions, whereas the latter concerns with large
scales. The results are compared with empirical
relations derived from the small and large scale
asymptotes of structure functions. The differences
between LSF and TSF exponents are examined in
the context of differences in either the Reynolds
number or the ratio u’/v".

EXPERIMENTAL FACILITIES

Two main experimental arrangements were used:

- air and water jets at Reynolds numbers (R,, based
on the longitudinal Taylor microscale, A, and on
u’), between about 230 and 1000;

- different wakes (of cylinder, plate or screen) at
R, ~ 200 with different values of #’/v’.

The air jet facility consists of an open circuit
wind tunnel: after the contraction (1:85 in area) the
exit diameter d is equal to 55 mm. An X-wire probe
was mounted on a 2-D traversing mechanism: it has
a diameter of 2.5 um and an active length of about
0.5 mm (about 3.3 Kolmogorov microscales at the
measurement station).

The water jet facility consists of a closed water
circuit with a strong contraction (1:50 in area) and a
diameter d =20 mm. Two-component forward-
scatter mode LDA measurements were made. The
fringe spacing was 3.42 um and the measurement
volume size is about 0.1mm x 0.1mm x 0.8mm. The
LDA data are linearly resampled.

The wake measurements were made in a low-
speed open circuit wind tunnel with a 2.4 m long test
section of square cross section (350 mm x 350 mm).
The floor of the test section was adjusted to achieve
a zero pressure gradient. Each of the five wake
generators (the vertical dimension /# ~ 25.4 mm was
the same in each case) spanned the full width of the
working section. Both solid and porous bodies were
used. The solid bodies included a plate mounted
normal to the flow and two cylinders, with circular
and square cross sections. The porous strip and
circular cylinder were constructed from a screen (0.5
mm wires) of 54% solidity.

Flow R, whiN L,/L, m (mm)

230+500 1.19 ~234 ~0.105
280:1000 133 ~22 ~0.10

Circular jet

Plane jet 500 1.10  1.50  0.082
1100 1.13  1.91  0.082

Wake
(porous strip)  ~200 0.85 7.00 0.125
(plate)  ~200 098 3.62 0.180
(sq. cylind)  ~200 1.06 472 0.184
(porous cyl) 00 1.07 9.09 0.227

Table 1: Experimental parameters: L, and L, are the
integral length scales associated with u and v
respectively.

In the jets, measurements were made at
distances, where the flow field may be considered to
be self-preserving. Because of the working section
length limitation, the wake measurements were made
at x = 70h, which is too small a distance to expect
self-preservation of the Reynolds stresses. The
number of samples is of the order of 5x10°. Taylor's
hypothesis is used: the LSF is obtained from
temporal differences of the longitudinal component,
while the TSF is inferred from the radial component.
The IR (or more approximately a scaling range) is
identified with the region where the third-order LSF
increases linearly with 7* (§" =1). The linear
relation is an exact result derived from the Navier-
Stokes equations for homogeneous isotropic
turbulence at high Reynolds numbers. Scaling
exponents of other (p#3) structure functions,
including the transverse ones, are determined by
fitting data over this range.

Table 1 contains relevant experimental
information. Note that the data cover at least one
order of magnitude in R, and a significant range for
the magnitude of 2’/v’.

AN EMPIRICAL DESCRIPTION OF THE
P™- ORDER STRUCTURE FUNCTIONS

The major portion of the observed differences
between LSF and TSF is ascribed to the large scale
anisotropy. Preliminary results for the air and water
jets suggest that the ratio #'/v', which is different in
each flow, is an indicator of the energy supplied to
the large scales. Further, Paret and Tabeling (1998)
have noted that the condition of incompressibility
could also cause LSF and TSF exponents to be
different, owing to the different forms of the
longitudinal and transverse correlation functions.
These indications are grouped into an empirical
model for SF scaling exponents.

Indeed, the magnitudes of second-order LSF and
TSF approach 2u” and 2v* for #*—w. A simplistic
description is given by the model proposed below.
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Figure 1: Model of the p™-order SF used to evaluate
the scaling range exponents in the IR.

A necessary requirement for a model, as sketched
in Figure 1, is that it should correctly reproduce the
asymptotic behaviour of the p™-order structure
functions (Frisch, 1995)

<o’ >> A, (p)yr'’? r >0

<déa’? >> 2B, (p)a'? r >

where a=u or v and the pre-factors 4,(p) and B,(p)
depend on the Reynolds number. It is necessary to
specify the limiting values for r*. At the lower end,
r*~1, whereas r* is proportional to the integral scale
L, at the higher end. We adopt Sreenivasan's (1995)
suggestion and introduce effective length scales
(which are multiples of n and L), N e and ) A~
The scaling exponents of the p™-order structure
function can then be approximated by

co - log C,(p)
=
log D,

where Co(p) = (2Bo(p) ’*) / (4o(p) Nee™) and D,
= Loe/Mesr From the previous relation it is possible
to evaluate the relative difference between
longitudinal (a=u) and transverse (a=v) exponents.
To this end, a knowledge of 4,(p) and B, (p) is
required. Assuming isotropy, for p=2, 4,(2)=1/15,
A(2)724,2), By(2)=1 and C,2)/C2)=2(w’'/NV’)
(similar relations can be obtained for p=4) (Frisch,
1995). Thus the model explicitly contains the ratio
u'/v', which is one measure of the large scale
anisotropy. As the degree of anisotropy increases,
the magnitude of the relative difference between
longitudinal and transverse exponents also increases.
Further, for isotropic turbulence, C,(2) ~ R,  and
D, ~ R,* so that the dependence on the Reynolds
number can be also evaluated.
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Figure 2: Second-order LSF (continuous lines) and
TSF (dotted lines) for the jet flows at R, = 500+1000
(at the top) and for the wake flows at R, = 200 (at the
bottom).

Estimates of scaling exponents from this
empirical model can be compared with experimental
results obtained for different large scale anisotropies
and different Reynolds numbers. The values of
NeelOn and L,g~L, have been chosen. These
choices (see Figure 1) correspond to the upper limit
of the dissipative range and the beginning of the
large-scale plateau.

RESULTS AND COMPARISONS

LSF and TSF are evaluated for the different
flows; examples of the results obtained with the
second-order are given in Figure 2. All the curves
approach the power law behaviour in the dissipative
range. For the jet flows, the differences in the
asymptotes are observed both in LSF and TSF; they
reflect the different extension of the IR which
depends mainly on the Reynolds number.
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Figure 3: Scaling exponents of longitudinal Figure 4: Relative differences between longitudinal

(continuous lines) and transverse SF (dotted lines)
for the wake flows at R, =200.

On the other hand, for the wake flows the
extensions of the IR are almost the same and the
LSF overlap. Changes in the TSF asymptotes are
observed, reflecting the differences in large scale
forcing through the variation in #’/v’. This is why
the jet data will be used mainly to investigate the
effect on SF of the Reynolds number while the wake
data will be used to examine the influence of u’/v’.

Effect of v'Iv’: wake flows

From the computed LSF and TSF, the scaling
exponents up to order 8 are evaluated within the IR.
They are given in Figure 3 for the wake flows. While
all the longitudinal exponents attain almost the same
value (which is also very close to the prediction by
the log-normal model also given in the figure), the
transverse cover a much larger interval. The largest
differences are observed for the circular cylinder for
which #’/v’ is largest. Therefore, the effect of the
large scale forcing seems to be much more important
for scaling exponents derived from TSF than for
those obtained from LSF. This behaviour is
observed also in the relative difference between
longitudinal and transverse exponents which is
shown in Figure 4. As previously noted by Romano
and Antonia (2001), this difference increases with p
in the jets. For the wakes, this is not always the case
because, for large p, there is also a decrease for the
and the square cylinder wake. In such conditions, the
forcing due to transverse velocities is expected to
match or even exceed that due to the longitudinal
velocities. The largest relative difference is observed
for the circular cylinder wake for which %’/ v’ is
largest.
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and transverse scaling exponents for the different
wake flows at R, = 200.
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Figure 5: Relative differences between longitudinal
and transverse second-order scaling exponents as a
function of the ratio of velocity fluctuations for the
wake flows at R,=200 (circles) and for the jet flows
(squares). The estimates from the empirical model
are also shown (dotted lines).

In agreement with this finding, the relative
differences for the screen strip wake are smallest,
and even change sign; in this flow, #’/v’ is smallest.
There seems to be a link between the magnitude of
u’/v’ and that of the difference between longitudinal
and transverse scaling exponents. This also emerges
from the previously described empirical model.

In figure 5, the relative difference between
second-order scaling exponents is shown as a
function of the ratio #’/v’ for the different wake
flows. Three points obtained from the circular and
plane jet data (z’/v’ = 1.13, 1.19, 1.33 see Table 1)
are also included.
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Figure 6: Scaling exponents of longitudinal and
transverse SF for the jet flows at different Reynolds
numbers (dotted lines are used to indicate error
intervals): V, LSF for R, =280; A, TSF for R, =280;
x, LSF for R, =440; *, TSF for R, =440; O, LSF for
Ry =500; +, TSF for R, =500; O, LSF for R, =1000;
@, TSF for R, =1000.

The data indicate an increase in the relative
difference as the large scale forcing differs for the
two velocity components. When #’/v’ is smaller than
0.9, the relative difference almost vanishes. The
results from the empirical model agree well with the
data; this indicates that the connection between this
difference and the large scale forcing seems quite
plausible.

Effect of Reynolds number: jet flows

The data from the jet flows are used to
investigate the effect of the Reynolds number. In
Figure 6, the LSF and TSF scaling exponents are
shown for the circular water jet (the ratio between #’
and v’ is approximately constant and equal to 1.33 as
given in Table 1). As for the wake flows, the LSF
exponents are almost unaffected by the different
values of the Reynolds number (the difference is
within a few percent); they are close to the log-
normal model prediction. On the other hand, the
transverse exponents depart from the longitudinal as
much as lower the Reynolds number. Therefore, due
to the increment in the scaling range as the Reynolds
number increases, the difference between
longitudinal and transverse exponents decreases.
This is confirmed by the analysis of the relative
differences between scaling exponents which can be
derived from Figure 7. As previously mentioned,
such a difference increases almost linearly with p;
moreover, it is almost halved at the highest
Reynolds number relative to the smallest Reynolds
number.
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Figure 7: Relative differences between longitudinal
and transverse scaling exponents for the different jet
flows (dotted lines are used to indicate error
intervals): A, Ry =280 (1); *, R, =440 (1); O, R,
=500 (1); @, R, =1000 (1).

&)
? ] o unN =133
3 ouyN =119
025 D—- i
e ” _? ——————————
(e}
0
025
= o0 1000 b
R,

Figure 8: Relative differences between longitudinal
and transverse second-order scaling exponents as a
function of the Reynolds number for the jet flows.
The estimates from the empirical model are also
shown (dotted lines).

Thus, not only the large scales, but even the small
scales play a part in determining the differences
between LSF and TSF scaling exponents. In Figure
8, the relative difference between second-order
scaling exponent is given as a function of the
Reynolds number for the circular jet flows (at two
different values of the ratio #’/v’). The difference
clearly decreases as the Reynolds number, but does
not vanish even at the highest Reynolds number.
This was also observed by other authors



(Sreenivasan and Dhruva, 1998; Antonia and
Pearson, 1999; Antonia, Pearson and Zhou, 2000).

As already noticed in the previous section, the
difference is also a function of the large scale
anisotropy through the ratio u’/v’. The trend is
similar for the data acquired at the two different
values of such a ratio.

CONCLUDING REMARKS

In this paper, the difference between exponents
derived from the scaling of longitudinal and
transverse structure functions is considered. It is well
established that such exponents exhibit marked
differences (larger than 30% even for low order
structure functions) and that there is no agreement
between results from different authors regarding the
magnitude of these differences. There is however
concensus on the fact that the anisotropy of the flow
field must exert an influence and cannot be ignored.
It is therefore, reasonable to expect this discrepancy
to be also caused by differences in initial and
boundary conditions; these can affect both small and
large scales. Here, the focus has been on the effect of
the Reynolds number on the “small” scales and the
ratio #’/v’ on the large scales.

Data in different wakes at about the same
Reynolds number are used to examine the effect of
the #’/v’ ratio, whereas data from jets (circular and
plane) at about the same ratio #’/v’ are used to
clarify the effect of the Reynolds number.

The ratio #’/v’ (which contains also the effect of
the large scale forcing) is shown to be a relevant
parameter for the difference between longitudinal
and transverse scaling exponents. When this ratio is
close to 1, the difference is small, whereas when it is
larger than 1 the difference increases. One may
expect longitudinal exponents to become smaller
than transverse exponents when u’/v’ < 1; this needs
further investigation.

As the Reynolds number increases, the region
normally identified with the inertial range (in reality,
an approximate scaling range) expands and the
relative difference between exponents is reduced;
this is in agreement with previous observations.
However, the difference does not seem to vanish
even when R, is as large as 4000.

An empirical model, based on the asymptotic
behaviour of longitudinal and transverse structure
functions, correctly predicts both the effect of the
large scale forcing and that caused by changes in the
Reynolds number.
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