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ABSTRACT"
A simple but accurate model of the effects of plane
flow curvature and frame rotation on the

development of sheared homogeneous turbulence is
described. Model results are presented for the
development of Reynolds Stresses and streamwise

integral length scales under conditions of prolonged

curvature, reversing curvature and a combination of
curvature and streamwise acceleration. Comparison
of model predictions to experimental data shows
good agreement.

INTRODUCTION

Streamwise curvature, acceleration and rotation of
plane shear layers commonly arise in technological
flows such as the boundary layer along a wing or
within the flow passages of turbo-machinery. Each
of these mean flow characteristics has been studied
by experimental and computational methods and
found to have a dramatic effect on the scales and
structure of the flow turbulence. As a result,
modeling these measured effects has been given
considerable effort and many schemes have been
proposed which have had varying degrees of
success. The model presented in this paper is a
further attempt towards this goal but is limited to the
simple case of homogeneous shear flow. This avoids
the complications introduced by wall effects,
entrainment or other forms of turbulence
inhomogeneity but does prevent direct application to
the practical flows described above. Nevertheless,
the present model development may provide insights
into the basic mechanisms involved that can be used
to improve existing, more robust models.

A curved uniform shear flow is illustrated in
Figure 1. In the traditional description of this flow,
using curvilinear (s,n) coordinates, the strength of
curvature relative to the shear is characterized by the
dimensionless parameter S=(U/R)/(dU/dn). For
flows with S>0, a convex wall flow, the turbulence
is stabilized; whereas flows with S<0, a concave
wall flow, the turbulence is destabilized. To facilitate
formulation of the model, two additional coordinates
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are introduced. One is a fixed inertial system, X; ,
and the other, X; , rotates at the rate of the mean
shear, Q (=U/R), so that X is locally tangent to the
mean streamline. The mean shear rate in the rotating
shear frame is dU;/dx, = dU/dn-U/R.

Rotating uniform shear flow is illustrated in Figure
2. The inertial frame remains fixed and the shear
frame rotates at the rate Q. The strength of the
rotation, relative to the shear, is Q/(dU,/dx,).
Analogous to curvature, mild rotation which
reinforces the rotation of the mean shear stabilizes
the turbulence and vice-versa. Curved and rotating
uniform shear flows are equated according to
Q/(dUy/dx,) = S/(1-S).

Figure 1: Curved uniform shear flow showing
inertial and shear frame coordinates along with the
traditional curvilinear coordinates.
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Figure 2: Rotating uniform shear flow showing
inertial and shear frame coordinates.

The present model is based on a previously
published geometric explanation of weak curvature
effects [1]. The primary assumptions of that analysis
were: 1) the mean shear produces turbulence at each
position s having a fixed structure typical of
uncurved uniform shear flow when referenced to the



shear frame, 2) the turbulence eddies, once
produced, are swept along by the stream unchanged
when referenced to the inertial frame, and 3) the
shear determines the time scale for adjustment of the
energy containing motions. The effects of curvature
on the turbulence arise from the coordinate axes
turning away from the existing eddies of the flow
while the rotating mean shear produces new eddies
with continuously varying orientations. The stresses
at a position s are calculated as the accumulated
effect of all the eddies at that position; each having a
different orientation which depends on its site of
production. A limited model developed in [1] that
was based on these premises, and the assumption of
constant turbulence kinetic energy, was found to
give accurate predictions of the measured values of
the normalized Reynolds stress anisotropy in
uniformly sheared turbulence subjected to prolonged
constant curvature.

Holloway [2] assumed the above arguments apply
to all aspects of the turbulence structure and
extended the model equations to the two-point
velocity covariance. This allowed prediction of the
effects of curvature on the ratios of the streamwise
integral length scales of the flow.

The present paper describes a simpler and yet
more complete model than that described above. The
changes that have been made are: 1) the integral
equations describing the development of the
anisotropy in [1,2] have been reformulated as
differential equations, and 2) the assumptions of
constant turbulence kinetic energy and length scale
have been replaced by equations which govern the
development of these scales. The result is a model
capable of predicting the Reynolds stresses and the
streamwise integral length scales of uniform shear
flow subjected to plane curvature. The model
naturally applies to rotating uniform shear flow
without modification although its accuracy in such
flows has not yet been tested directly. In addition,
the model is extended to the effects of acceleration
by including the effects of the associated streamwise
strain on the mean shear rate and direction.

MODEL DESCRIPTION

Anisotropy

The anisotropy of the two-point velocity covariance
is defined as

M (7 1 L,6) = (e, F 1 L1) - 1, 1 L1)) 1 * (D)
where the scales used for normalizing the velocity

covariance and spatial separation, 7, are calculated
from

q*(t)=uu,(0,1)
L) == [ 7.1

a5
The anisotropy and scales are shown as functions of
the time, t, in the mean convected frame. [ ij(? ,1) is

()

the two-point covariance for an isotropic turbulence
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having the same qz and L as the uniform shear flow

under consideration.
The development of the anisotropy tensor in the
inertial frame is modelled using the simple equation

dM*ij (3)

where the time constant, T, is taken to be simply
proportional to the shear rate but increasing with the
spatial separation distance 7/ L. The subscript (r) in
equation (2) denotes the reference values of
anisotropy that occur in rectilinear uniformly sheared
turbulence, i.e. no curvature or rotation.The out of
plane anisotropy component was calculated using
M*33 = - M|, - M’y Once M’; has been
determined from the integration of Equation (2), the
anisotropy in the frame of the shear may be
determined by rotation of the components from the
inertial frame using

M, @
The effects of flow curvature and rotation are
introduced by way of the rotational transformation,

T

+M' = (Mkl )(r)eike/'l Lj=12

.
M ue e,

€; ,'which relates the coordinates of the inertial and

shear frames. The angle between these axes in plane
flow is calculated from

6 = [Qdr* )
0
where Q (=U/R) is the rate of shear frame rotation.
The Reynolds stress anisotropy,
m,()=M,(0,?), and an equation for its
development is derived from equation (3) with
r=0. Reference values for the Reynolds stress
anisotropy vary slightly among uniformly sheared
flows with the typical values being [1]

172 -14 0 p
(M), =|-14 -14Ja 0 (6)
0 0 -.03

where the flow is in the X, direction and the shear in
the positive X, direction. Holloway and Tavoularis
[1] did not include o in their reference values and
obtained good estimates of the curvature effects on
the shear component of the stress anisotropy. Here
we will take o = m,, /(m,,), as an arbitrary measure to
improve the prediction of the normal stresses under
stabilized conditions. The value of 1 for zero
separation provided in [1], T, = 1.5(dU,/dx,), will be
used for all calculations.

The dimensionless stresses can be calculated
from the anisotropy by using the following
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The length scale anisotropy is defined as the
integral of Mj with respect to the distance between
points for a given direction of the displacement



vector,
A=) =M (FIL,yd(r/L)®
r 0

An equation for A*ij , which is relative to the inertial
frame, may be formed from the integration of
Equation (3) keeping the direction of 7 fixed. The
result is

- dA*i' * . .

T —+Aj =(Ak,)(r)e[kej, i,j=12 9)
where 7 is an average value of the time constant
appearing in equation (3). The out of plane normal
component is calculated as A3 =- A" - A"y The

integral length scale anisotropy in the shear frame is

subsequently  calculated by the rotational
transformation
Ay =ANueye, (10)

Equation (9) is simple, but its use is complicated by
the fact that reference values of the integral length
scale anisotropy, (A );, must be provided for a range
of displacement vector directions. This arises
because the local shear frame in a rotating or curved
flow changes its orientation relative to a fixed 7.
For example, the development of A*ij for a
streamwise integral length scale anisotropy would
depend on reference values for non-streamwise
separations at upstream positions. To simplify the
present calculations, the changes in orientation of the
displacement vector relative to the shear frame will
be ignored and the integral length scale anisotropy
for streamwise displacements will be calculated
solely using the reference values for streamwise
displacement. The error associated with this
approximation increases with the rate of curvature or
rotation relative to the time constant T . For more
details concerning this approximation see reference
[2]. Typical reference values of (A;; ) for streamwise
separations are [2]

0252 -0.19 0

11

Aoy =|-019 -0.16Ja 0 n
0 0 -0.09

The value, 7 = 2.25(dU,/dx,)" * was used in all the
present calculations.

The dimensionless streamwise length scales,
Li/L may be calculated using my and Ay as for
example

1
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L mn"'% L mz:+l (12)
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L MY L
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Scales

This section describes equations for the development

of ¢* and L which may be combined with the

equations of previous section to allow predictions of

the Reynolds stress and streamwise integral lengths
The exact equation for > in homogeneous shear

flow may be written [3]

dg*(r) _

g (1) 13)

dt dx,
where the last term on the right hand side is the
dissipation rate of the turbulence kinetic energy. In
the present work the dissipation rate was modelled as
being proportional to the kinetic energy (delayed by
an interval equal to the adjustment time of the
Reynolds stress anisotropy) and the mean shear
q’(t-1,) (14)
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o
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Equation (14) was found to work well for the present
shear dominated flows and is a novel alternative to
the standard k-e formulation. Obviously it would not
be applicable to unsheared flows such as decaying
grid turbulence. The effects of curvature or rotation
in equation (13) arise primarily from their effects on
the turbulence shear stress and mean shear rate. The
factor of 3 was chosen to give the correct exponent
of growth for uncurved uniform shear flow.

An exact equation for the development of q°L in
homogeneous shear flow, from which L can be
obtained, can be formulated from the the two-point
velocity covariance equation [3] by contraction and
integration with respect to streamwise separation
distance

2
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dt dx , att
Equation (15) requires modelling of the production
term, because it involves the exact integral length
scale, and a dissipation rate. Both models were
chosen simply on the basis of providing the correct
growth rate for the length scale in uniformly sheared

turbulence. Under such conditions both ¢* and L

grow exponentially with exponents in a 2:1 ratio

since L is related to the speed, q, by the shear rate.

This condition can be met under asymptotic

conditions if

qu(t——z—Toj

_\ 3 ) 6
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q
The validity of equations (15) and (16) for curved
flows will be evaluated in the next section.

COMPARISON TO EXPERIMENTAL
DATA.

Model predictions will be evaluated by direct
comparison to a selection of experimental data from
uniformly sheared turbulence subjected to constant
curvature, reversing curvature, and constant
curvature with flow acceleration. In each experiment



the uniform shear flow was developed in a straight
tunnel until it had a self-preserving structure where
the stress anisotropy approaches constant values and
the velocity and length scales of the turbulence grow
exponentially. The flows were then guided
tangentially into a curved tunnel of the appropriate
shape where the linearity of the mean shear and
uniformity of the turbulence statistics was
approximately preserved in the central core of the
tunnel. Measurements for the development of the
turbulence under the influence of curvature were
made along the tunnel centerline. All values reported
are expressed in the shear frame coordinates as
described in Figure 1.

The components of Reynolds stresses and integral
length scales measured near the end of the straight
tunnel served as initial conditions for the
calculations and were used to specify reference
values of the anisotropy for each flow. The
streamwise integral length scales were estimated by
integrating the temporal autocorrelations up to the
first zero and applying Taylor’s frozen flow
hypothesis.

Prolonged Curvature.

The problem of uniformly sheared turbulence
subjected to prolonged constant curvature has been
studied by Holloway and Tavoularis [4] using a wide
range of experimental conditions that included
constant curvature tunnels of different radii and
different mean shear rates. They found that the
turbulence structure of these flows was strongly
affected by curvature and that these effects could be
correlated using the curvature parameter S. In this
paper the model is applied to the shear dominated
flows in which -0.2<S<0.2 .

Figure 3 shows measured and predicted values
for the exponents of growth for q* and L? defined as
Ky = (dq*/dt)/q* and 2k = (dL¥dt)/L* . The data
shows that flow curvature has a strong effect on
these exponents, but less effect on their ratio. The
model tends to underpredict the effects of curvature
on the exponents but does give the correct trend over
a wide range of S.
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Figure 3: Exponents of growth of q2 (O)and L? (A)
measured in uniform shear flow subjected to
prolonged constant curvature of various strengths
[4]. The lines represent model results.

Figure 4 shows a comparison of the measured and

predicted values of my which develop
asymptotically. The dashed lines show the
predictions for o=1 and the solid lines the
predictions using o = my; /(m;;),. The values of my;
are fixed at S=0 by the choice of its reference values
(equations (6) and (11)). The model accurately
predicts the redistribution of energy among the
component directions in the shear frame and the
decline in anisotropy with increasingly positive
values of S.

0.3
0.2
0.1
0
-0.1
-0.2
-0.3

-0.3 01 S 0.1 0.3

Figure 4: Values of the Reynolds stress anisotropy,
m, , measured in uniform shear flow subjected to
prolonged constant curvatures of various strengths.
Symbols representing the data [4] are for: (i=1, j=1)
W (12) @ (2,2) A; (3,3) ¢. The solid lines
represent model calculations.

Figure 5 shows a comparison between the
measured and predicted values of the streamwise
length scale anistropies. The alternative definitions;
Ly/Luyy, 2Ly/Lyy-1, and 2L,,,/Ly,-1 are used to allow
an easier comparison to published experimental data.
The trends of the data are accurately predicted for
the normal components but less so for the shear
component. For example: 2L /L -1 correctly shows
a minimum at S~0.05 and that 2L _ /L -1 is negative
up to small values of positive S and then increases to
positive values for S > 0.1. The predictions of L /L,
decreases with increasingly positive S but at too
slow a rate compared to the data. This error in L,
would prevent an accurate calculation of the
production of g°L in equation (15). The loss of
anisotropy among the length scales for positive S is
similar to that observed for the stress.
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Figure 5: Components of streamwise integral length
scale anisotropy measured in uniform shear flow
subjected to prolonged constant curvatures of
various strengths. Symbols as in Figure 4.



Reversing Curvature.

A schematic of the uniform shear flow with
reversing curvature studied by Chebbi et al. [5] is
shown in Figure 6. Figure 7 shows the streamwise
variation of mean shear rate and rate of rotation of
the shear frame which were derived from
measurements [5] and used in the model
calculations. In particular, considerable effort was
made to match the mean streamline shape reported
by Chebbi [6] for this flow. This study showed that
the model predictions were very sensitive to small
adjustments in mean streamline shape.

The turbulence enters the curved tunnel at s=0 and
for the first metre is subjected to stabilizing
curvature with S ~ 0.06, for the second metre to
destabilizing curvature with S ~ -0.06 and the final
metre of the tunnel is uncurved. As a result the
anisotropy and rates of growth of the turbulence
tends to adjust between the asymptotic states of
Figures 3, 4 and 5.
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Figure 6: Schematic of the uniform shear flow with
reversing curvature studied by Chebbi et al. [5,6].
Streamwise distance along the tunnel centreline is
measured in metres from the start of curvature.
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Figure 7: Streamwise variation of the mean flow
parameters; (dU/dn-U/R) [s”] and U/R [s"], along
the centreline of uniform shear flow with reversing
curvature. The lines represent fits to experimental
data of [5,6]. The dashed line refers to U/R and the
right ordinate.

Figures 8 and 9 compare the model predictions of
Reynolds stresses and the streamwise integral length
scales to measured values. These show very strong
agreement in the curved sections but less so in the
straight section where curvature is removed.
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Figures 8, 9: Development of Reynolds stress
components and streamwise integral length scales
for uniform shear flow with reversing curvature.

Symbols representing the data of [5, 6] are: ulz and

L, ® uu, ® ,’and L,,, A,; 4> and L;; ¢
Lines represent model calculation using the mean
flow conditions of Figure 7.

Combination of curvature and acceleration.
A schematic of one of several uniform shear flows
combining constant curvature and flow acceleration
studied by Roach [7] is shown in Figure 10. The
curvature of the tunnel centreline is constant over its
length and the acceleration is applied in the first half
of the tunnel by plane convergence of the upper and
lower walls.
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Figure 10: Schematic of uniform shear flow
subjected to constant flow curvature and streamwise
acceleration [7].

The mean acceleration of the flow is accounted
for in the model calculations by including the effects
of the associated mean streamwise rate of strain.
This additional strain rate effectively increases the



mean shear rate and rotates the direction of
maximum mean shear towards the streamwise
direction. The modified mean shear rate is

du,\' (au U)Z ( 6U)2
L —_—] 4| 2—

dx, on r Os
and the angle of rotation of the maximum mean
shear towards the streamwise direction is

1 ( 20U | 8s ]
f =—arctan| ———
2 oU /on-U /R

The angle B is subtracted from the angle 0 used in e;
of equation (3) and (9) but not subtracted from the
angle © used in e; of equations (4) and (10). This
apparent inconsistency arises because the mean shear
is rotated by P but the coordinate axes used for
presentation of the results are not. Figure 11 shows
the streamwise variation of, U/R, (dU/dn)*, and B
which were derived from measurements [7] and used
in model calculations. The turbulence enters the
curved tunnel at s=0 and is subjected to a
combination of stabilizing curvature with on average
S~0.16 and increasing streamwise strain rate during
the first 1.5 metres of length. In the second half of
the curved tunnel the turbulence is subjected to
curvature alone but with substantially higher velocity
giving S~0.35 on average. The streamwise strain
increases the mean shear rate by 50% and rotates it
by up to 30° In the present case of stabilizing
curvature this additional rotation opposes the
rotation due to curvature. The streamwise strain rate
also has a negative effect on the production terms of
equations (13) and (15).
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Figure 11: Streamwise variation of the mean flow
parameters; (dU/dn-U/R) [s, heavy solid line] , B
[degrees, light solid line], and U/R [s'l, dashed line]
measured along the tunnel centreline of the uniform
shear flow with constant curvature and streamwise
acceleration. U/R is referred to the right ordinate.

The measured and predicted development of the
Reynolds stresses and streamwise integral length
scales are shown in Figures 12 and 13. Over all it is
clear that the kinetic energy and length scales of the
turbulence decay under this combination of
stabilizing curvature and acceleration at a faster rate
than would occur for curvature alone. This is clearly
evidenced by the development after the removal of
acceleration. This is also true for the streamwise
components of stress and length scale but not for the
other components which decay at a reduced rate or
increase in the accelerating portion of the tunnel.
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The model predictions do display the data trends but
the abrupt change in decay rate of the stresses at the
entrance to the curved tunnel is not predicted. This
may be due to a distortion of the flow at the tunnel
entrance that has not been accounted for or perhaps a
shortcoming of the model.
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Figure 12,13: Development of Reynolds stress and
streamwise integral length scales for uniform shear
flow with reversing curvature. Measurements from
[3]. Symbols as in Figures 8 and 9.
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