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ABSTRACT

In complex turbulent flows, it is argued
that the standard pressure-strain correlation
model must be augmented by additional ten-
sors to accurately account for complicating
influences (such as system rotation, stream-
line curvature, buoyancy, etc.). This leads
to the question, how many tensors do we
need to adequately represent the pressure strain
correlation. Representation theory indicates
that a complete function-space representa-
tion of pressure-strain correlation in terms of
Reynolds stress anisotropy, mean strain rate
and mean rotation rate involves tens of basis
tensors. On the other hand, purely from di-
mensional arguments it can be shown that at
a given point in space, the pressure-strain cor-
relation can be expressed completely in terms
of only three basis tensors in two-dimensional
mean flow and only five in three-dimensional
flows. So is the number of basis tensors re-
quired thirty or is it five? In this paper, we will
examine and explain the difference between the
two numbers and how that impacts on mod-
eling pressure-strain correlation or any other
traceless symmetric second-order tensor in tur-
bulence. Specifically we will compare merits of
short and long tensor representations. We also
derive mathematically equivalent shorter ten-
sor representations of popular longer versions
of pressure-strain correlation models.

INTRODUCTION

Modeling the rapid part of the pressure-
strain correlation continues to be difficult es-
pecially in complex turbulent flows. In order
to account for the complicating effects of extra
rates of strain (system rotation, stream- line
curvature, buoyancy etc.), flow geometry (wall-
blockage effects) and non-locality (in space and
time) researchers in recent time have added ex-
tra tensors to the standard representation of
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pressure-strain correlation. The coefficient of
each new tensor is then ‘calibrated’ to yield
acceptable performance in the flow of inter-
est. Some models proposed recently consist of
upto ten tensor terms for even two-dimensional
mean flows. This practice leads to several im-
portant questions:

1. How does the addition of the new terms af-
fect the model performance in bench mark
flows? For example, if an added tensor is
not linearly independent of tensors in the
standard representation, that can have an
adverse influence in bench-mark flows in
which the standard model has been cali-
brated.

. How is the model calibration performed?
Are the coefficients of the standard model
left unchanged or are they also recali-
brated.

. Is the set of model coefficients the most
optimal? Are there other combinations of
coefficients that would yield better perfor-
mance.

. How sensitive is the model performance
to changes in the model coefficients? Can
small changes in the model coefficients lead
to drastically different model predictions.

It is preferable to keep the number of ten-
sors in the pressure-strain correlation model
down to a small number. This leads to the
question ‘what is the optimum number of ten-
sors required for a complete representation
of pressure-strain correlation?” Further, how
will this number change with the addition of
new phenomena influencing turbulence? These
questions can be approached from two view
points. The first is to appeal to representa-
tion theory for the complete integrity tensor
basis. This typically leads to an unmanageably
large tensor basis. The second approach is to
use physical dimensionality arguments. It will



be demonstrated that the absolute minimum
number of tensors needed for a complete rep-
resentation of pressure-strain correlation (or
any other symmetric, traceless tensor) at any
given point in space is three in two-dimensional
turbulence and five in the three-dimensional
case. Further, these numbers are independent
of the influences that may complicate turbu-
lence. The number is dependent only on the
physical dimension in which the symmetric,
traceless tensor resides. The main objective
of this paper is to understand why the two ap-
proaches lead to completely disparate answers
and suggest an adequate and manageable rep-
resentation for the pressure strain correlation
model.

PRESSURE-STRAIN
MODELING

The ‘so-called’ standard pressure-strain cor-
relation model has its origins in Launder,
Reece and Rodi (1975) (LRR model) and it
has the following form:

CORRELATION
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In the LRR model, the coefficients are

C?=3.0;Cf =0;Cy =0.8;C3 = 1.75; C4 = 1.31.

(3)
A variant of the above model also given in LRR
is

CY =3.6;Cl =0;Cy =0.8;C3 =1.2;Cy = 1.2.
(4)

For the quasilinearized Speziale, Sarkar and
Gatski (1991) (SSG) model, the coefficients are

CY =3.4;Cf =1.8,Cy =0.36;C3 = 1.25; C4 = 0.4.

(5)
This family of models has been quite success-
ful in a variety of benchmark flows. However,
in some important complex flows (eg., elliptic
flows) it fails to capture even the qualitative
trends correctly. To improve model perfor-
mance in complex flows, many researchers have
added extra tensor functions to the standard
form. Representation theory is used to guide
in the selection of new tensor functions.
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REPRESENTATION THEORY AND IN-
TEGRITY BASIS.

Representation theory, which has its roots in
classical invariant theory, is a powerful analyti-
cal tool routinely used in continuum mechanics
for developing constitutive relationships. More
recently, representation theory has been used
in turbulence modeling for determining the
complete tensor basis. This integrity basis is
the (smallest) set of irreducible tensor func-
tions that completely span the function space.

If we postulate that the pressure-strain cor-
relation depends on the symmetric and anti-
symmetric parts of the velocity gradient tensor,
then the integrity basis consists of ten alge-
braically irreducible tensors:

N
bij=D_ anljj (6)
n=1

where N is the number of basis tensors (ten
in this case), a, is the coefficient of the n-
th basis tensor Ii:. The coefficient a, is an
unknown polynomial function of the scalar in-
variants of the basis tensors. If we believe that
the pressure-strain correlation will also depend
on other quantities (eg., b;;), the number of
the integrity basis tensors balloons to over 40.
If we are also interested in buoyancy effects
this number will go up further. There have
been a few papers in literature that propose
pressure-strain correlation models that include
over twenty tensors. Such lengthy models are
not computationally viable. Even more im-
portantly, calibrating the coefficients is very
difficult when the representation is large. Are
all the integrity tensors really necessary for de-
riving practical models?

Although the integrity basis is irreducible
in function space, they typically constitute a
redundant basis in physical space. This is most
easily understood by considering vectors rather
than tensors. Let us postulate that a vector
v; is dependent on ten different vectors I} to
I'°. The integrity basis approach will lead to
a representation of the type

n=10

vi———ZanIi"-i---- (7)

n=1

Consider any three linearly independent vec-
tors from within I. We will denote this subset
by M. Since v; resides in a three-dimensional
space, we can unequivocally state that the sub-



set M forms a complete set of basis tensors:

n=3

vi(x,t) = z dn M (x,t) (8)

n=1

The coeflicients have a simple interpretation:
dy, is the projection of vector v on vector M",
i.e, d, = v - M". Infact, even the other vec-
tors in I can also be expressed in terms of the
basis M. Clearly, of the ten integrity basis
vectors only three can be linearly indepen-
dent in physical space. Does that mean that
the three-vector subset M is all that we re-
quire to completely represent v? In regions
of physical space where all the M vectors
are non-degenerate (non-zero and linearly in-
dependent) the answer is clearly yes. But in
regions of physical space where one or more of
M goes to zero, the representation is incom-
plete. Then we will need a different subset of
three non-zero independent vectors. The in-
tegrity basis can be considered the superset of
all three-vector subsets required to completely
represent the vector v. Similar arguments are
valid for tensors also.

Important inferences. If we want a complete
representation that is valid in all situations,
real or imagined, then we need the full integrity
basis. But as seen before, carrying all the
integrity basis tensors in the model representa-
tion is a great burden: both from the point of
view of model calibration and application. In a
broad class of problems, it is quite possible that
the physics of the phenomenon does not per-
mit the occurrence of many of the situations
against which the integrity basis provides us
with a safeguard. In those cases, the integrity
basis can be be substantially reduced without
compromising the validity of the representa-
tion.

In modeling the pressure-strain correlation,
if we can identify a small number (equal to or
more than that dictated by dimensionality) of
tensors from the integrity basis that are non-
degenerate in the domain of interest, then that
subset can ably serve as a complete representa-
tion. In fact, this is the reason for the success
of the standard model which does not include a,
large number of the integrity basis tensors in its
representation. In order to maximize the appli-
cability of the model, the choice of the subset
must be made judiciously. In this paper, we
will call such a subset the optimal basis.

A caveat. The coefficients in the integrity
representation are (unknown) polynomials of
the invariants of the tensors. The functional
forms of the coefficients in the ‘optimal ba-
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sis’ are completely unknown. However, this
is not too disadvantageous. Irrespective of
which method is used, the coefficients will be
determined purely empirically. The fact that
the ‘optimal basis’ coefficients are of unknown
functional form is therefore irrelevant for tur-
bulence applications. If a formal approach
were to be available to determine the poly-
nomial coefficients of integrity basis, then we
should re-evaluate this stance.

SHORTEST REPRESENTATION FOR
PRESSURE-STRAIN CORRELATION

Jongen and Gatski (1998) demonstrate that
the Reynolds stress anisotropy tensor can be
completely represented at any point in physical
space in terms of only five tensors. The reason-
ing is quite simple. The anisotropy tensor is
symmetric and traceless and resides in a three
dimensional physical space. As a result, it
has only five linearly independent components
requiring five tensors only for its complete de-
scription. Certainly, the same must be true for
pressure-strain correlation or any other sym-
metric and traceless tensor in turbulence.

The ‘optimal basis’ for pressure-strain cor-
relation representation can be as small as three
tensors in two-dimensional mean flow. For
these flows, the standard representation that
involves four tensors is completely adequate
unless any one of b;;, S;; or W;; become zero.
Otherwise, this model form can capture the
effects of buoyancy, wall-blockage, rotation,
streamline curvature, ellipticity, history and
non-locality, etc., without the addition of any
further tensor terms. The effect of these other
influences will manifest through the coefficients
which will be functions of the scalar invariants
of the different phenomena. An immediate im-
plication is that we do not need the quadratic
anisotropy tensor at all in the rapid pressure-
model. The second scalar invariant of course
can appear in the coefficients. The standard
form with invariants from these tensors can
equally perform the task. Of course, for three
dimensional mean flows we will need a few
more basis tensors in the optimal representa-
tion but not many.

One example that demonstrates the wide
range of applicability of the standard model
form involves the elliptic flow (Blaisdell and
Sheriff, 1996). The poor performance of
LRR and SSG model in this flow led to
the speculation that perhaps spin and struc-
ture function tensors need to be included in
the pressure-strain correlation model (Kassinos
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Figure 1: Evolution of kinetic energy in elliptic flows. DNS data from
Blaisdell and Sharif (1996). The figures from top to bottom correspond
to ellipticity factors of 1.5, 2.0 and 3.0. These correspond to 77 =
0.13,0.26and0.39.

and Reynolds, 1994). However, it was shown in
Girimaji (2000) that the standard form of the
model is quite adequate for this purpose, pro-
vided the coefficients are made sensitive to the
appropriate invariants. In Figure 1, the evolu-
tion of kinetic energy in an elliptic streamline
flow is shown as a function of time for three dif-
ferent ellipticity values. The direct numerical
simulation (DNS) result is shown with the solid
line. For all ellipticity values, DNS shows that
the kinetic energy ultimately increases. The
SSG model completely misses this trend. For
low ellipticity values this model indicates en-
ergy decay. The behavior of LRR model is
only marginally better (not shown). The Giri-
maji (2000) model (also of standard form) does
quite well in capturing the DNS behavior. The
comparison of the dissipation evolution is made
in Figure 2.

This modeling approach shifts the emphasis
from various tensors to modeling their invari-
ants. In a two-dimensional mean flow consider
the following representation:

¢z’j = Hlsij + HQ(Sika]‘ — WikSkj)

Dissipation evolution in elliptic flow
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Figure 2: Evolution of dissipation in elliptic flows. DNS data from
Blaisdell and Sharif (1996).

1
+H3(SikSkj — §5ij51m5'lm) 9)

It can be shown (see further below) that the
coefficients H are projections of the pressure-
strain tensor on each of the basis tensors:

Hy = ¢Si;/m
Hy = ¢ij(SixWhrj — WirSkj)/ (2n1m2)
Hsy = 6¢;SijSjr/(n?) (10)

where m = SijSij and 2 = WijWij- Clo-
sure modeling is now required for the scalar
invariants ¢;;S;;, .. etc. In dealing with the
invariants, we are more likely to focus on real
turbulence physics rather than be bogged down
with the coordinate and reference frame trans-
formation issues encountered with tensors.
Opting for a short tensor representation at
the expense of more complete model coeffi-
cients leads to a very important benefit. If
the number of tensors in the representation is
much larger than the shortest basis required
in physical space, many of the basis tensors
will be linearly dependent. This can lead to
serious difficulties since their coefficients will
also be linearly dependent. The coefficients are
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typically determined by solving a set of con-
straint equations. When the number of basis
tensors exceeds the minimum value, this coef-
ficient equations become underdetermined and
no unique choice is possible. Unless extreme
caution is exercised, one can possibly end up
with a model which involves cancellation of
large terms. Such models will clearly be un-
satisfactory.

Alternate representation for the standard
model

To demonstrate the viability of the optimal
basis approach, we will recast the standard
four-tensor basis model in a three-tensor ba-
sis. Consider again the representation showed
earlier:

¢ij = HIM5 + HoMZ + HsM3 (11)
where
Mj = Si
ij = (SitWij — WikSk;)
M} = (SiSkj— édijslmslm) (12)

Clearly, this representation will be incomplete
when the strain-rate tenor or the rotation rate
vanish. In all other two-dimensional mean
flows, the standard pressure-strain model can
be exactly recast in this form. An attractive
feature of this representation is that the basis
tensors are orthogonal in an invariant sense:

17r2
MM = 0; M5MS = 0; MM}, =0. (13)
From this it can be easily inferred that
H, = Mzg¢1j/(M;qM;q)
Hy = Mi2j¢ij/(Mz?quq)
We can obtain the three basis tensor equiv-
alent of any pressure-strain correlation model
(in two-dimensional mean flow) by merely sub-
stituting that model in the above expressions
and calculating the corresponding H'’s.
In deriving the equivalent for the standard

model given in equation (1), the following iden-
tities are used:

SikSkj = 0-5’77151(]2)
Wikaj = —0.57’]251(]2)
SiueWriSi; = —0.5mWi;

Wik SuWi; = 0.5m25;;
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MZME = 2mmn
MEMY = ni/6

I bik Sk;Sji

12 = bikSkjoi (15)

|

where 61(]2) is the two-dimensional Kronecker
delta function. The coefficients of the three-
tensor version of the standard model is:

P? I I
H = Cy+Cy +2C3-—1+QC4—2
meK m 2
Pl P
Hy, = 2C. - 2C
2 e Y2Kmn,
PI; 2 P

H; = 6C, e + 3 32K7)1

This alternate representation brings up an
interesting question. Rapid distortion theory
indicates that the value of the coefficient of S;;
must be 0.8. It is for that reason that C; = 0.8
in the LRR model. In the new representation,
the coefficient of S;; is Hy. What is the impli-
cation of the Rapid Distortion Theory for H;?
It can be argued that it is H; which should
be 0.8 and not C5. This example clearly high-
lights the perils of including too many linearly
dependent basis tensors in the model represen-
tation.

Another three-tensor representation with a
wider range of applicability is

(16)

M = b
M7 = (byWij — Wikbg;)
1
M} = (bikbkj—§5ijblmblm) (17)

DISCUSSION AND CONCLUSION

In this paper we address the issue of how
many basis tensors are required for an ade-
quate representation of pressure-strain corre-
lation. The integrity basis, stemming from
Representation Theory, sets the upper bound
for the number of basis tensors required. The
integrity basis completely spans the function
space and is guaranteed to be well-behaved at
all times. However, even for a small number
of candidate tensors (b;;, S;j, Wi;) the num-
ber of basis tensors exceeds manageable pro-
portions. The dimensionality of the physical
space sets the lower limit on the number of
basis tensors required. That number is three
for two-dimensional mean flows and five in the
three-dimensional case.

We also demonstrate in this paper how
longer versions of pressure-strain correlation



models can be easily recast in terms of smaller
tensor basis representation. Clearly the impli-
cation is that we really do not need very many
of the integrity basis tensors for adequately
representing pressure-strain correlation. The
shorter representation has another important
advantage. The coefficients can be determined
with more precision than in the case of longer
representation. Based on these, we propose the
use of optimal representation which, in number
of basis tensors, is closer to the dimensionality
limit.
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