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ABSTRACT

Predictions of steady and unsteady injection driven
flows in a plane channel are performed by solving the
averaged Navier-Stokes equations using a compressible
Reynolds stress model. The boundary condition for
the fluid injection through the porous wall has been
formulated by taking into account experimental inves-
tigations. For the steady flow, laminar to turbulent
regimes are reproduced in good agreement with the ex-
perimental data. For the unsteady flow, the resonant
frequency as well as the coherent flow structures are
fairly well predicted with the experiment.

INTRODUCTION

Turbulence plays a significant role in the flow in
solid propellant rocket motors through its influence on
the momentum and energy transfers in the motor cham-
ber. For fluid dynamics investigations, the flow in a
solid rocket motor can be produced by a duct flow
with fluid injection from a porous wall. Different flow
regimes occur in the duct, depending on the injection
Reynolds number R; = usd/v where us, § and v rep-
resent the injection velocity at the permeable surface,
the diameter and the kinematic viscosity (Casalis et
al., 1998). The flow can evolve spatially from a laminar
to a steady turbulent regime, with a transition pro-
cess (Dunlap et al., 1990). It can also be oscillating
due to the coupling between vortices generated by the
hydrodynamic instability mechanism and the chamber
acoustic modes (Flandro, 1986 and Doston, 1997). In
the case where the vortices are emitted at a frequency
close to the one of a longitudinal acoustic mode, the flow
can be characterized by an acoustic resonant regime.
For instance, large solid propellant boosters for space
launchers may exhibit low pressure and thrust oscilla-
tions. These different flow regimes affect the ballistics
prediction. Because of the large size of the chamber, di-
rect numerical simulation of the whole flow domain can
not be performed. Only a flow domain of the chamber
has been simulated recently (Venugopal et al., 2000).
Large Eddy Simulation is a promising route for study-
ing motor internal flows that allows a good description
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of the turbulence interaction mechanisms (Apte and
Yang, 2000). But the required computational time still
remains very large. Numerical flow predictions have
been made by several authors using first order turbu-
lence models such as k — € or k — w. But these models
cannot give satisfactory prediction of the transition pro-
cess and the turbulence levels in the post transition
zone (Sviridenkov, 1976; Sabnis et al., 1989; Chaouat,
1997). Contrary to first order turbulence models, a
Reynolds Stress Model provides a better description
of this type of flow (Beddini, 1986). This is mainly
due to the pressure-strain correlation term which has
a pivotal role in redistributing turbulent energy among
the Reynolds stress components. The present study
is concerned with second order turbulence transport
modeling of steady and unsteady flows with natural in-
stabilities. We show that this level of closure is able to
reproduce both steady and unsteady flows with a good
description of the acting mechanisms.

EXPERIMENTAL SETUP

In order to analyse injection induced flows, ONERA
has developed the experimental setup VECLA (Avalon,
1998). It is a plane channel bounded on one side by
a porous plate made of sintered bronze and on the
other side by an impermeable wall as indicated in fig-
ure (1). The size of the porosity of the porous material
is 8 um. Cold air at 303 K is injected with a uni-
form mass flow rate m. The length of the channel
is 581 mm. By adjusting the height of the channel §
and the injection velocity u,, different flow regimes can
be realized. In particular, for § = 10 mm, m = 2.619
kg/m?®s, us ~1.36 m/s, Rs ~ 1600, the flow under-
goes a transition process from the laminar to turbulent
regime. For § = 20 mm, m = 2.04 kg/m?s, u, ~ 1.70
m/s, Rs ~ 2200, the flow presents an acoustic resonant
regime. It is of interest to note that linear stability
theory shows that the axial-flow Reynolds number at
neutral stability increases linearly for large values of the
injection Reynolds number (Casalis et al., 1998). Veloc-
ity measurement have been performed with a hot wire
probe located at different cross sections of the channel.



GOVERNING EQUATIONS

Turbulent flow of a viscous fluid is considered. As
in the usual treatment of turbulence, the flow variable
¢ is decomposed into ensemble Reynolds average and
fluctuating parts as £ = £ + ¢'. In the present case,
the Favre average is used for compressible fluid so that
the variable £ can be written as £ = £ + £” with the
particular properties £/ =0 and p€” =0, where p is
the mass density. These relations imply that § PE/p.
The Reynolds average of the Navier-Stokes equations
produces in Favre variables the following forms of the
mass, momentum and energy equations:
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where u;, E, ¥;;, 0ij, q; are the velocity vector, the
total energy, the total stress tensor, the viscous stress
tensor and the total heat flux vector, respectively. The
mean stress tensor ¥;; is composed of the mean pressure
P, the mean viscous stress @;; and the turbulent stress
pij as follows:

(4)

In this expression, the mean thermodynamic pressure
is computed as:

Sij = —pdij + Gij — prij

p= (-5 (B —pauii - (5)
where -y is the ratio of specific heats c¢p/c,. The tensor
0ij takes the usual form:
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where the Favre-averaged Reynolds stress tensor is

7ij = uju] and p is the molecular viscosity. The mean

heat ﬁux g; is composed of the laminar and turbulent
flux contributions:
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where T', h and k are, respectively, the temperature, the
specific enthalpy and the thermal conductivity. Clo-
sure of the mean flow equations is necessary for the
turbulent stress pu} !, the turbulent transport of the
turbulent kinetic energy pujuju;, and the turbulent
heat flux p h'"u}'. The Favre-averaged correlation tensor
Ti; = u]u! is computed by the Reynolds stress model
of Launder and Shima (1989) which has been extended
for compressible lows and modified for predicting flows
with fluid injection through a porous wall (Chaouat,
2000). This model is selected because its formulation
is simpler and requires less empirical adjustment than
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most other models. So it is a good canditate to handle
a large variety of flows. It has predicted rotating chan-
nel flows fairly well (Chaouat, 2001). The transport
equation of the Reynolds stress tensor is:
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The terms on the right-hand side of equation (8) are
identified as diffusion, production by the mean flow, dis-
sipation, slow redistribution, rapid redistribution and
wall reflection. In these expressions, ¥ = 7;/2 is
the turbulent kinetic emergy, ai; = (mi; — 3kdi;)/k
is the anisotropy temsor, ci, c2, c{’, ¢y are func-
tions which depend on the second and third invari-
ants A2 = aijaji, As = aijajrari, the flatness coeffi-
cient parameter A =1 — 2(A; — A3) and the turbulent
Reynolds number R; = k* /ve. The dissipation rate € in
expression (8) is computed by means of the transport
equation:
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and é = € — 20(0Vk/Oz2)?. The diffusive terms are
modeled by a gradient hypothesis:
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The heat transfer of the turbulent flux is computed as:
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where ¢, and P,, are the specific heat at constant pres-
sure and the turbulent Prandtl number, respectively.
The functions used in that model are listed in table

1. Values of the constant coefficients are cs = 0.22,
Ce1 = 1.45, ce2 = 1.9, ce = 0.18, ¢, = 0.09.

NUMERICAL METHOD

The finite volume technique is used to solve the
full equations incorporating all the derivative terms.



1 | 14258447 (1 — exp(—(0.0067R:)?))
c2 0.75A%

et —%c1+1.67

cy max(%cz - %,0)/02

fu 0.4k % /exs

¥ | —ca/s<154 (B —1) <ca/s

Table 1: Functions used in the RSM model.

The numerical discretization scheme is second-order
accurate in space and the time advancement uses a
three-step Runge-Kutta method which is appropriate
for simulating unsteady flows. A pressure boundary
condition is applied at the exit section of the chan-
nel. Boundary conditions for impermeable walls assume
zero velocity and constant temperature, zero turbu-
lent kinetic energy and the wall dissipation rate value
€w = 2v(0Vk/dx2)?. For a permeable wall, a con-
stant mass flow rate is imposed at the same temperature
as the impermeable wall. Experimental measurements
in the immediate vicinity of the permeable wall show
that the velocity follows a Gaussian distribution. In-
vestigations indicate also that the amplitude of the
fluctuating velocity increases with increasing injection
velocity (Avalon, 1998). From a physical point of view,
the fluctuating part of the velocity is due to the in-
jected fluid passing through the porous plate made of
small bronze spheres and by the acoustics of the cavity.
Based on these considerations, the boundary condition
has been modeled by a twofold hypothesis. The first
effect is taken into account by introducing a modeled
turbulence level at /tEi wall related to the mean injected
velocity as o = (ujuly/42)'/2. It is assumed that the
material porosity is fine grained (8um). The second
effect which is not a turbulent effect is produced by a
forcing with a Gaussian velocity distribution P(u) in
time but constant in space. The forcing is thus applied
directly to the near wall mean velocity. Another point
to emphasize concerns the pressure fluctuations of the
flowfield. Considering that the permeable wall does not
reflect the pressure fluctuations, the term ®}; of equa-
tion (12) is suppressed in the direction normal to the
wall.

NUMERICAL RESULTS

Steady flow regime

Numerical flow predictions are performed on a mesh
requiring 100 x 100 non-uniform grid points in z; and
x2 directions. The objective is to reproduce the steady
flow which evolves spatially from laminar to turbulent
regimes. Due to the mass conservation equation, the
flow Reynolds number R, = pnund/p based on the
bulk density p, and the bulk velocity u., varies linearly
with the axial distance along the channel so that it can
be computed as R,, = mzi/u. It ranges from zero to
approximately 9 x 10*. In this work, different values of
the coeffcient o, are considered. As a result, it is found
that the effect of turbulence in injected fluid is to delay
or to anticipate the transition process of the flow. This
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is illustrated in Figure (2) which shows, for different
values of the injection paramater os, the evolution of
the integral momentum flux coefficient defined by :

pé [ paddes
5 .~ 2
(fo puld:m)

The rapid drop of the coefficient B corresponds to the
transition location. It can be noticed that the lower
turbulence level o = 0.1 is too small to trigger the tran-
sition process. This Figure reveals a qualitative agree-
ment with the experimental data. Figure (3) shows the
evolution of the dimensionless mean velocity profiles
in different sections of the channel for the computa-
tion using os = 0.2. The profile located in the section
1 = 22 cm appears to be quite laminar whereas the
profiles corresponding to the sections at 45 cm and 57
cm are found to be turbulent. The general shapes of
the profiles display a good agreement with experimen-
tal data. Figure (4) and Figure (5) show, respectively,
the streamwise and normal turbulent velocity fluctu-
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ations normalized by the bulk velocity (u}u/)'/?/um,
(uul)*/2up, in different sections. One can observe
that the RSM model predicts fairly well the turbulence
intensity which evolves from zero to approximately ten
percent of the bulk velocity u.,,. Note that previous
computations of this flow using the k — ¢ model have
overpredicted the turbulence intensity by about 300 %
in the post-transition zone (Chaouat, 2000).

B= (17)

Unsteady flow regime

Several predictions of the oscillatory flowfield with
natural instabilities are performed on meshes taking
into account 600 x 100 non-uniform grids. For the
computation, 2 x10° temporal iterations which rep-
resents 0.2 s of time are made. The experimental
signal pressure spectrum plotted in Figure (6) indi-
cates that the flow presents a resonant regime at the
frequency f = 407 Hz (Avalon et al., 1998). This is
quite close to the frequency f = 3a,/4L = 426 Hz
which corresponds to the second longitudinal acoustic
mode 3\/4. The quantity a, denotes the sound ve-
locity. Indeed, visualisation tests (Avalon et al., 2000)
show the emission of flowfield vortices at this frequency.
Therefore, the flow is characterized by an acoustic res-
onant regime. In general, the wave length solutions
of the Helmholtz equation are A =4L/(2n+ 1) and
the frequencies are f = (2n+ 1)ao/4L. For the val-
ues n = 0,1,2, the first frequencies are 142, 426 and
711 Hz. It can be mentionned that the dimensionless
resonant frequency is Q* = 2mdf/u, = 30 whereas
the dimensionless critical frequency obtained by the
linear stability analysis is Q; ~ 18.5 (Casalis et al.,
1998). In the computation, the Gaussian forcing has
been artificially generated through fluctuating veloci-
ties u} = a4y Py, ub = aus P> where P, and P, are
Gaussian distributions and the quantity a is a nu-
merical coefficient. These distributions are obtained
by Pi = t; cos(2ntz) and P> = t; sin(2wt2), where
t1 = v/—2Ints, t2 and t3 are uniform random numbers
in the interval [0,1] (Knuth, 1998). The distribution
of the probability function Pi, (similary for P»), is
represented on Figure (7) for 10° events. In order to



reproduce the level of the experimental noise, the coef-
ficient o is assigned a value 0.02. As for the previous
s/tga/dy flow prediction, an injected turbulence intensity
uyuy related to the porous material properties is also
introduced at the wall. One result of interest is that
the flow regime remains stable if no Gaussian forcing
is imposed in the flowfield, regardless the intensity of
the injected turbulence. Therefore, in order to trigger
the instabilities, the Gaussian forcing has been applied
and periodically refreshed in the immediate vicinity of
the permeable wall. Lupoglazoff and Vuillot (1998),
in order to simulate this flow in laminar regime, also
have to trigger the instabilities by injected noise. The
present computed unsteady pressure signal is plotted
on Figure (8). Figure (9) shows the head-end pressure
spectrum that reveals the presence of the mode 3\/4.
The fluctuating pressure peaks occur at 403 Hz and 422
Hz, with a resolution frequency of 5 Hz. The following
modes A/4, 7TA/4 and 9A/4 are also observed on this
Figure. Although the resonance frequency is well pre-
dicted, a discrepancy in the magnitude of the pressure
fluctuations is observed between the experimental and
computed signals in Figures (6) and (9). This is due to
the poral response or admittance which consists in ad-
justing the injected mass flow rate as a function of the
local pressure (Lupoglazoff and Vuillot, 1998). How-
ever, in the present work, a zero poral response has
been considered for the sake of simplicity which should
explain the over-estimated level. Figure (10) shows the
instantaneous vorticity contours in the whole flow do-
main in the real scale. The development of the acoustic
boundary layer as well as the parietal vortex shedding
which results from natural instabilities can be observed
in the channel. Figure (11) shows the enlarged view
of the instantaneous vorticity contours near the exit
of the channel and reveals the flow structures. Figure
(12) describes the instantaneous entropy contours and
illustrates the coherent eddies of the flowfield. Figure
(13) shows the contours of the turbulent Reynolds num-
ber and reveals that the turbulence is mostly developed
near the impermeable wall. It is of interest to mention
that the k — € model with the same conditions at the
boundaries (Chaouat and Schiestel, 2001) failed to re-
produce the large scale structures of the flow because
of its dissipative behavior (see Figure 14).

CONCLUSION

An advanced second-order turbulence model has
been used to predict flows with complex physics, such
as strong effects of the streamlines curvature due to the
fluid injection, different flow regimes from laminar to
turbulent and the transition, unsteady flow involving
an acoustic resonance. Both steady and unsteady flows
are fairly well predicted in comparison with the exper-
iments. In particular for the unsteady flow, it has been
demonstrated that the RSM turbulence model is able
to reproduce the vortex shedding mechanism which re-
sults from natural instabilities and has been visually
observed.
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Figure 2: Axial variations of the coefficient 5. o: exper-
imental data. dot-dashed-line: os = 0.1, dotted-line:
os = 0.2, dashed-line: o; = 0.3, long-dashed-line:
os = 0.4, solid-line: o5 = 0.5
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Figure 3: Mean dimensionless velocity profiles in dif-
ferent sections. o = 0.2; Symbols: experimental data;
solid line: RSM. 22 cm: <; 45 cm: O; 57 cm: o.
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Figure 4: Turbulent velocity fluctuations normalized by
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the bulk velocity in different sections; (u}/u})/?/um.
0s = 0.2. z; = 22 cm: <, dot-dashed line; 45 cm: 0O,

dashed line; 57 cm: o, solid line.
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Figure 5: Turbulent velocity fluctuations normalized by
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the bulk velocity in different sections; (uju})'/?/um.
os = 0.2. 1 = 22 cm: <, dot-dashed line; 45 cm: 0O,
dashed line; 57 cm: o, solid line.
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Figure 6: Experimental head end presssure spectrum
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Figure 7: Gaussian probability for the fluctuating ve-
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Figure 8: Head end pressure evolution versus time.
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Figure 9: Head end pressure spectrum.

Figure 10: View of the instantaneous vorticity contours
in real aspect ratio.

Figure 11: Enlarged view of the instantaneous vorticity
contours.
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Figure 12: Enlarged view of the instantaneous entropy
contours.

Figure 13: Enlarged view of the turbulent Reynolds
number contours R; = k?/ve. 0 < Ry < 1620.

Figure 14: Enlarged view of the instantaneous vorticity
contours for the k — ¢ model.





