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ABSTRACT

An explicit algebraic Reynolds stress model
is extended to the wall. It is shown analyti-
cally how to reproduce the near-wall behaviour
of Reynolds stresses through the variation of
the model constants. A complete model is pro-
posed and applied to two-dimensional bound-
ary layers in adverse pressure gradient. The
extension to three-dimensional flows is sim-
ply obtained and no further wall damping is
needed. The model is applied also to rotating
pipe flows.

INTRODUCTION

Explicit Algebraic Reynolds Stress Models
(EARSM) offer a great potential for CFD ap-
plications in industrial flows with strong effects
of adverse pressure gradients or system rota-
tion. Indeed they improve the predictions of
Reynolds stress anisotropies which are impor-
tant in such flows but they allow to keep the
traditional two-equation turbulence model res-
olution in CFD codes with no addition of new
transport equation.

For two-dimensional mean flows, an exact

solution of the algebraic Reynolds stress equa-

tion has been obtained by Wallin & Johansson
(2000) who proposed an extension for wall re-
gions. Damping functions of van Driest type
were applied directly on the components of the
anisotropy tensor. This paper deals with some
developments made on EARSM models based
on Wallin & Johansson expression. The near-
wall extension is made by introducing directly
the damping functions in the modelling con-
stants, following some recent developments on
RSM models by Shima (1997). An interesting
feature of this approach is that the theoret-
ical behaviour of the anisotropy components
in the sub-layer region can be prescribed ex-
actly, ensuring the two-component turbulence
behaviour at the wall. The wall damping func-
tions are expressed in terms of the turbulence
Reynolds number Re, which is preferable to
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the normalised wall-distance y* to avoid a poor
behaviour close to the separation point.

The new EARSM model is applied in rela-
tion with a two-layer k/k — € model in APG
two-dimensional boundary layer flows and in
rotating pipe flows where a three-dimensional
EARSM formulation is needed.

EARSM FORMULATION
The EARSM expression is based on the
algebraic equation for the Reynolds stress
anisotropy tensor (b = 7/2k — 1/3I) obtained
from the full Reynolds stress transport equa-
tion assuming local equilibrium and neglecting
diffusion:
(2b+2/3I)(P-¢)=P-¢e+10

(1)

The dissipation tensor ¢ is assumed to be
isotropic so that ¢ = 2/551. The pressure
strain tensor IT is assumed to be linear with
respect to the anisotropy tensor:

II/e ~2Clh—-2CiP/€h+02§

Cs(b S +S b —2/3tr{bSH)
Ci(b 2~ 0.b)

L+l

(2)
where S and £2 are respectively the mean strain
tensor and the mean rotation tensor both nor-
malized by the turbulence time scale 7 = k/e.
This form is the most general linear form and
contains any linear pressure strain model as the
LRR model from Launder et al. (1975) or the
linear SSG model used by Gatski & Speziale
(1993).

The solution for b is sought as a combina-
tion of independent tensor groups made with
the velocity gradient tensors S and £2 follow-
ing the approach proposed by Pope (1975).
Three tensorial groups are independent for
two-dimensional flows whereas there are ten
groups for three-dimensional flows in the most
general case. However by a suitable choice of
the modelling constants of the pressure strain
expression, the expression for b can be re-



duced respectively to two and five groups as
shown by Wallin & Johansson (2000). For
two-dimensional flows the anisotropy tensor is
sought as:

b= 3S+6:(8*-1/3mI)+B3(SQ—0QS) (3)
where 7, = tr(S?) and 7, = tr(Q?). When the
anisotropy expression (3) is introduced into the
algebraic equation (1), the expression of the 3;
coeflicients is found as function of the veloc-
ity gradient invariants and P/e. An equation
for P/e = —2tr(bS) is then obtained, which is
of the third degree for two-dimensional flows
and has consequently an explicit solution. For
three-dimensional flows the equation is of the
sixth degree and only an approximate solution
for P/e can be found. Otherwise the expres-
sion is implicit and the solution has to be found
through an iterative procedure, which is not
suitable as it may increase the computational
effort and may lead to non-physical solutions.

The EARSM model needs the knowledge of
the normalised velocity tensors S and £ and
of the five constants Cy, C], C2, C3 and Cy
which have to be prescribed either theoreti-
cally or empirically. The C; constant can be
found experimentally considering the return to
isotropy of turbulent flow when velocity gradi-
ents are suppressed. The values obtained lie
usually between 1.5 and 2.5 depending upon
the experiments. The C] constant comes from
the SSG model and has no theoretical basis. It
can thus be set to zero for the sake of simplic-
ity. The Cs constant can be found theoretically
considering the Rapid Distortion Theory limit
and takes the value of 4/5. The C3 and Cy4 con-
stants can be obtained through experiments.
The LRR pressure strain model respects the
normalisation constraint so that C3 and Cj are
not independent, which is not the case for the
linear SSG model.

The approach proposed here follows the SSG
model where C3 and C, are calibrated inde-
pendently using equilibrium shear flow data.
The objective is to reproduce anisotropy values
found in experiments or DNS: homogeneous
shear flow and logarithmic law in boundary
layer or plane channel flows. For these flows,
there are three independent anisotropy com-
ponents. As two constants have already be
prescribed (C] = 0 and C2 = 4/5), the three
others (C1, C3 and C4) can be obtained from
only one experiment or DNS result. However
it is preferable to obtain a set of constants
which gives the best result over a family of
referenced data. By minimising the rms de-
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viation between the theoretical and the data,
the following values were obtained:

{ Ch,=15 C_ =0  Cp, =4/5

Cs,, = 1.6 Cy, =1.08

As shown in fig. 1, they reproduce nearly
the same results as the Gatski & Speziale (GS)
model without the need of the C] constant.
They also differ from the values of Wallin &
Johansson (WJ) but provide a good behaviour
for all anisotropy components compared to the
existing data for equilibrium flows.
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Figure 1: Evolution of anisotropy components with total
shear rate k.S/e in equilibrium shear flows - Comparison of
EARSM predictions with DNS and experiments.

NEAR-WALL EXTENSION

First of all it is important to limit the turbu-
lent time scale 7 = k/e which scales the veloc-
ity gradients when approaching the wall as this
quantity goes to zero. Physically the turbulent
time scale is limited by the Kolmogorov time
scale and following Durbin (1993) we adopt the
expression:

7 = max(k/e, C’T\/I/TS) with C; =6 (5)

The near-wall extension of the homogeneous
expression of the EARSM is obtained by in-
troducing wall damping functions directly into
the modelling constants, following recent ap-
proaches proposed in second-moment closures
such as in the RSM model of Shima (1997).
There are two different behaviours in the near-
wall region: in the sub-layer region (y* < 3)
the convection and the production of turbu-
lence are neglictible and the molecular diffu-
sion equilibrates the dissipation; in this region
the turbulence is almost in a two-component



state. In the buffer-layer region (3 < y* <
100) the convection is still neglictible but the
other terms are of the same order. Because
the extent and the physics of both regions are
very different, two different dampings were in-
troduced: one active in the sub-layer and the
second active from the sub-layer up to the log-
arithmic region. Consequently each constant
is sought as:

Ci=Ci (1= fi) + Ci . fo (6)

where Cj, is the value of the constant at the
wall, f; is a wall damping function which acts
only in the sub-layer region and f; is a wall
damping function which acts also in the buffer
region up to the logarithmic region (f; and fp
lie between 0 at the wall and 1). The constants
are thus continuously evolving from their value
at the wall Cj, to their value in the logarithmic
region where they take the equilibrium value
Ci.,-
Close to the wall in the sub-layer region, the
theoretical behaviour of the anisotropy com-
ponents as a function of the normalised wall-
distance yT is known to be:

by = b, +ryt+ O(y+2)
b = —2/3+0(y*?) (M)
bia = syt + O(y+2)

where by1,, 7 and s can be obtained from DNS.
Introducing expression (6) in the EARSM for-
mulation and making a Taylor expansion with
respect to y*, the behaviour of the anisotropy
predicted by the model is obtained. Thus by
comparison with the expected behaviour (7),
the values of Cj, and the y* developments of
the f; functions are obtained. It is first found
that:

Cyy = C2, Cs, = Cug
{ Cao = 4/3 — 2b1y, (8)

whereas C, is not determined. A way to pre-
scribe this value is to assume the realizability
of the slow part of the pressure strain ten-
sor which imposes C;, = 1. To obtain the
other values it is necessary to prescribe the
value of by1,. Based on DNS we assume that
b11, = 1/3. The C;, then takes the values:

Cr, =1, Cay = 4/9, Cs, =2, Cay = 2/3 (9)
The y*-behaviour of the f; functions is:

fi=ayt? + 0@y+?)
fo = auyt +O0(y+?) (10)
f2= f3=2a4y™ +O(y*?)
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The f; function which damps the C; con-
stant in the sub-layer region behaves quite dif-
ferently from the other functions as it is at least
parabolic in y* whereas the others are linear in
yt. To restrict the number of functions used,
it can be chosen as the same as the buffer-layer

damping function f, which behaves as y+? in
the sub-layer to avoid the interaction with the
sub-layer linear functions fo, f3 and f4. The
slope a4 can be determined with the help of
DNS. However this analysis showed that it is
difficult to obtain the correct behaviour for
the b;o term by the use of classical functions
(exponential, hyperbolic...). A simple solution
is then to also damp the term (P/e)q calcu-
lated by the equilibrium EARSM expression
as: Ple = (P/€)eq.-fp where fp is an addi-
tional wall damping function which acts in the
buffer region as f;. It can be shown that f,
has to be linear in y™ in the sub-layer region.

The buffer layer function f; could be ob-
tained in a formal way by solving the transport
equation for the turbulent scales assuming the
shape of the velocity profile is known. How-
ever in this paper the f, function was deter-
mined through the help of DNS data. All the
damping functions f;, f, and f, were chosen as
simple exponential functions based on the tur-
bulent Reynolds number Re, = y\/E/ v. This
approach has been validated on the flat plate
boundary layer DNS of Spalart (1988) using
the U, k and ¢ profiles of the DNS. The results
are presented in fig. 2.
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Figure 2: Evolution of anisotropy components with nor-
malised wall distance - Flat plate boundary layer Ry =
1410 - Comparison of EARSM predictions with the DNS
of Spalart (1988).



As a comparison the predictions obtained
with the EARSM expression without any wall
damping is also presented in the figure. It
shows that the equilibrium expression is not
able to reproduce the correct anisotropy field
in the wall region, even if the velocity and
turbulent fields are correct and even if the
EARSM adjusts itself in a more natural way to
the near-wall flow than a two-equation turbu-
lence model based on Boussinesq constitutive
relation. The comparison of the anisotropy
components between the DNS and the EARSM
prediction is quite correct on the b;; and bag
terms, but it could be further improved on the
b2 term by the use of more complex functions.
However considering future CFD applications
it is important to keep simple and robust ex-
pressions for the damping functions.

LENGTH SCALE EQUATION

Because the EARSM modifies the constitu-
tive relation between the Reynolds stresses and
the velocity gradients, the length scale equa-
tion of a two-equation model is supposed to
behave differently when it is used in associa-
tion with an EARSM. A good approach would
be to develop the length scale equation taking
into account the EARSM expression from the
beginning. However this point is not presented
in this paper but will be addressed in future
studies.

Here the proposed EARSM was used in as-
sociation with an existing two-layer k/k — ¢
model. The inner k-model is the Chen & Pa-
tel model (1988) and the outer k — ¢ model
is the high-Reynolds number Launder-Sharma
model (1974). The blended model switches
from the inner model to the outer model when
the turbulent Reynolds number Re, reaches
a given value (usually 250) in the logarith-
mic region. The diffusion model for k£ and e
equations is the Daly & Harlow model (1970)
where the diffusion constants c¢; and ¢, were
kept to their initial values of respectively 0.25
and 0.15. There is an interest to use this
gradient diffusion model rather than a classi-
cal diffusion model because the full Reynolds
stress tensor is known through the EARSM
expression and one may expect an improve-
ment to use a more accurate model. Assum-
ing the production-to-dissipation equilibrium
in the logarithmic region, a relation is ob-
tained between the modelling constants of the
e-equation and the EARSM formulation. With
the numerical values given in (4), we obtain the
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relation:

Cs, (11)

Keeping the classical value C,, = 1.92 and
assuming the value of von Karmdan constant
K 0.41, we obtain C,, = 1.54, which is
close to the standard value. The EARSM near-
wall extension has to be tuned specifically to
be used with the k-equation model as it does
not reproduce the same turbulent field as in
the DNS data. The final form of the damping
functions are:

— C,, =~ 15Kk%¢c,

fo =1 — exp(—apRey)

(__
fa=1—exp(—\/asRey)

fp =1—exp(—+/apRey) (12)
fi=fh fo=f fi=f
ap =0.005 a;=01 a,=003

APPLICATION TO APG BOUND. LAYERS

The proposed model was first applied in
APG boundary layer flows. Fig. 3 presents the
longitudinal evolution of the friction coefficient
in the Samuel & Joubert (1974) experiment.
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Figure 3: Evolution of the friction coeflicient - Comparison
of the EARSM and the two-layer k/k — & model predictions
with the experiment of Samuel & Joubert (1974).

The EARSM is compared to the initial two-
layer model and to the experiments. The
EARSM shows a good agreement with the data
and a better evolution than the original model.
However the differences are quite small because
the original two-layer model behaves well in
APG flows. The velocity profiles are presented
in fig. 4. In the wake part of the boundary layer
the EARSM performs better than the £ — ¢
model. This is a result of the modification
of the constitutive relation as the EARSM is
able to maintain the level of anisotropy in this
region while P/¢ is varying, contrarily to a clas-
sical two-equation model.

The model was then applied to the exper-
iment of Skare & Krogstad (1994). Fig. 5



Figure 4: Velocity profile at £ = 3.04m - Comparison of the
EARSM and the two-layer k/k — & model predictions with
the experiment of Samuel & Joubert (1974).

presents the longitudinal evolution of the fric-
tion coefficient. In this case the EARSM pro-
vides less better comparison to the experiments
than the original two-layer model. In the orig-
inal model the length scale is imposed in the
near-wall region and even in a large part of
the logarithmic region. However the EARSM
formulation interacts with the length scale and
modifies its good behaviour in the inner region.
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Figure 5: Evolution of the friction coefficient - Comparison
of the EARSM and the two-layer k/k — € model predictions
with the experiment of Skire & Krogstad (1994).

The velocity profile presented in fig. 6 shows
that the outer part of the boundary layer is
better predicted with the EARSM than with
the original two-layer model, as noticed be-
fore. However a logarithmic plot of the velocity
profile would show that the EARSM underes-
timates the logarithmic law slope. In this case
the interaction with the length scale is not pos-
itive. The result is that even if the wake region
is well predicted, the deterioration of the log-
arithmic law slope provides too low C values.
This result shows that the length scale equa-
tion has to be developed in relation with the
EARSM expression to get good results in APG
flows.
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Figure 6: Velocity profile at z = 5m - Comparison of the
EARSM and the two-layer k/k — & model predictions with
the experiment of Skare & Krogstad (1994).

APPLICATION TO THE ROTATING PIPE

Applying the EARSM model to three-
dimensional flows does not need any further
developments as the near-wall damping is con-
tained into the modelling constants. When
approaching the wall, every component of the
anisotropy tensor is damped naturally as P/e
is. The major problem comes from the ap-
proximation made on the P/e estimation as no
explicit solution for this term exists for three-
dimensional flows. The ratio is thus estimated
from a perturbation of the two-dimensional so-
lution, following Wallin & Johansson (2000).
For this type of flow the classical Boussinesq
models fail to predict the modification of the
flow with the rotation.

The EARSM predicts the good behaviour as
presented in fig. 7 and fig. 8 which show respec-
tively the axial and azimuthal velocity compo-
nents in the experiment of Imao et al. (1996)
for different rotation numbers. Due to the
particular choice of the modelling constants,
the EARSM expression (3) contains nine dif-
ferent tensorial groups for three-dimensional
flows, but no numerical weakness behaviour
was noticed in the computation. The EARSM
compares well to the experiment on both ve-
locity components. It gives the correct effect
with the rotation: the maximum axial velocity
component at the center of the pipe increases
with the rotation number (fig. 7) and the az-
imuthal component moves away from the linear
profile (fig. 8). However this last behaviour is
less pronounced with the EARSM than in the
experiments.

CONCLUSION

A novel approach was proposed to extend
an EARSM model to near-wall regions by ap-
plying wall damping functions directly on the
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Figure 7: Axial velocity profile for the rotating pipe - Com-
parison of EARSM with the experiments of Imao et al.
(1996) at different rotation numbers: Ro=0, 0.5, 1.
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Figure 8: Azimuthal velocity profile for the rotating pipe -
Comparison of EARSM with the experiments of Imao et al.
(1996) at different rotation numbers: Ro= 0.5, 1.

modelling constants. The analysis of the sub-
layer region provides relations which served as
a guide to build well-behaved functions. Ap-
plications to two-dimensional APG boundary
layers in association with a two-layer k/k — ¢
model proved that this approach was valid.
The main interest is that the extension to
three-dimensional flows, such as the rotating
pipe flow, is straightforward and does not
need any further developments. However the
EARSM model could be further improved by
developing a specific length scale determining
equation in association with the EARSM for-
mulation.
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