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ABSTRACT

A general form of an eddy-viscosity repre-
sentation for the Reynolds stress is a finite
tensor polynomial with the fifth power of the
mean velocity gradient. In this paper the fifth-
order eddy-viscosity representation is investi-
gated with the aid of a two-scale turbulence
theory. We apply the nonlinear model to the
homogeneous shear flows.

INTRODUCTION

The Reynolds-averaged turbulence model
with the nonlinear eddy viscosity has been
studied very actively. The second-order nonlin-
ear models were proposed by Speziale (1987),
Yoshizawa (1984), Rubinstein and Barton
(1990), among others. These models reproduce
the anisotropic effect of the Reynolds stress
and predict the secondary flow in a square duct
flow. Moreover, in recent years, several third-
order nonlinear models were proposed by Craft
et al. (1996), Shih et al. (1997) and the au-
thors (2000) and the model expressions include
the rotation and curvature effects. Pope (1975)
studied a nonlinear eddy-viscosity formulation
and showed that a general form is a finite ten-
sor polynomial by ten symmetric base tensors
composed of mean strain and vorticity tensors.
The highest-order nonlinear representation is a
fifth-order one. However he did not determine
the model coefficients in the general model.

The statistical theories for the turbulence
model are a renormalization group (RNG)
theory, a two-scale direct-interaction approx-
imation (TSDIA) and so on. The RNG
for turbulence was proposed by Yakhot and
Orszag (1986). Rubinstein and Barton (1990,
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1991) derived the eddy viscosity model us-
ing the RNG. The TSDIA was proposed by
Yoshizawa (1984, 1987) and several turbu-
lence models with anisotropy, helicity and non-
equilibrium effects were suggested using the
TSDIA. These theories are complicated two-
point closure methods and we can determine
model coefficients by the spectral information.
However, it is difficult to perform the high-
order analysis of these methods. Yoshizawa
(1993) suggested a bridging method between
the eddy-viscosity-type and stress-transport-
type models through the two-scale procedure.
The bridging method is a one-point closure one
and is a simpler procedure than the TSDIA.

In the present work, the fifth-order repre-
sentation of the Reynolds stress is theoreti-
cally investigated using the bridging method
with the previous result of the TSDIA analysis
performed by Okamoto (1994). In the third-
order eddy-viscosity expression, we compare
the present result with the TSDIA one. We
test the nonlinear model in three homogeneous
shear flows.

MATHEMATICAL PROCEDURES

Fundamental Equations
The Navier-Stokes equation with the incom-
pressible condition is

8ui 8uiuj _ Bp 82ui
ot + B.’I?j - ———67,' + V(?xjaa:j’ (1)
Buj _

where u;, p and v are the velocity, kinematic



pressure and kinematic viscosity, respectively.
We take the ensemble average of egs.(1) and
(2), and have mean field equations
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where U; and P are the mean velocity and
pressure, R,] is the Reynolds stress defined by

Rij = —ulu and uj is the ﬂuctuatlng velocity.
The governmg equations for u} are written by
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Two-Scale Formalism
We use a small parameter é and introduce
the space and time variables as

x(=x), X(=0x), t(=t), T(=t). (7)

The mean field is dependent on the slow vari-
ables and the fluctuating one depends on the
slow and fast variables. The mean and fluctu-
ating quantities are expressed by

f=FXT)+ f(xXT) (8)

We apply this scale separation (8) to the fluc-
tuating field equations (5) and (6) and solve
the fluctuating equations perturbatively by a
direct-interaction approximation proposed by
Kraichnan (1964).

As a result, the second-order expression of
the Reynolds stress R;; in the TSDIA analysis
is written as
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where K and € are the turbulence energy and
its dissipation rate, S;; = 9U;/0x; + 0U;/0x;,
I/Vij = 8Uz/8.'1:J — BUj/(?:ci, D/Dt is the La-
grangian derivative and * indicates the devia-
toric part of a tensor defined by (SimSm;)* =
SimSmj — SmnSnmdij/3. The model constant
in the linear eddy-viscosity term is larger than
0.09 in the standard K- model and the coeffi-
cient includes non-equilibrium factors DK/ Dt
and De/Dt pointed out by Yoshizawa and Ni-
sizima (1993). The details of this TSDIA anal-
ysis are described by Okamoto (1994).

Bridging Method

In this section, we give an outline of the
bridging method between the eddy viscosity
and stress models through the two-scale pro-
cedure. By renormalizing the second-order ex-
pression (9), a governing equation leading to
the asymptotic solution (9) is obtained as
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where B;; is the deviatoric part of the Reynolds
stress defined by B;; = R;j+2K6;;/3. We solve
eq. (14) in perturbational manner and obtain
the higher-order eddy viscosity model for the
Reynolds stress.

At first, let us check difference between re-
sults of the TSDIA and the present analysis
with respect to the third-order expression of
R;;. The third-order nonlinear form is ex-
pressed by

Bi; = 717}(;) + ’Yﬂ"i(jl) + ’73Ti(jz) + 747}(]3)
+ ’757}(;1) + ’767‘1,'(1'1) + ’777'}2-2) + Wsj}(f)
+ 7972-(]-4) + 710 (Simej + Sijmi)
+ ’7110(1)7}(]-1) + ’7120(2)7}(]-1) + ’7137}(;3)
+ 1Ty (15)
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Table 1: Model constants of the TSDIA and the present
analysis. The bold-faced values are the TSDIA ones.

TSDIA Present analysis
Main coefficient

7 0.123 0.123
Y2 -0.0427 -0.0427
Y3 -0.0297 -0.0297
Y4 0.0122 0.0122
Y5 0 0

Ye 0.0169 0.0148
Y7 0.0176 0.0155
Y8 0.00487 0.00423
Yo 0 0
Y10 -0.00480 -0.00424
Y11 -0.00307 0.00360
712 0.00803 0.00253
713 -0.00350 -0.00443
Y14 0.00523 0.00363

DK /Dt coefficient
7 -0.147 -0.147
Y2 0.107 0.0955
Y3 0.0754 0.0666
Y4 -0.0316 -0.0273
Y5 0 0
De /Dt coefficient

Y1 0.0933 0.0933
Y2 -0.0640 -0.0620
Y3 -0.0460 -0.0432
Y4 0.0194 0.0177
Y5 0 0

Here, T = DT/Dt and the tensors Ti(jn) are
symmetric base tensors given in Appendix.
The model coefficients are
K? K?DK
M= Cmain_&__ +Cpx/pt 7
K3 De
— 16

K3 K3 DK
Yons = Cmain‘€—2 + CDK/Dtg—;;Tt
K* De
+ CDe/DteTﬁv (17)

4

Yon14 = Cmain%- (18)
The model constants in +, are summarized in
Table 1. The values of this analysis are in
agreement with those of the TSDIA, though
there are disagreements in 711 and 712 between
both the results. The terms of +1; and 7;2
are proportional to the linear eddy-viscosity
term and we can incorporate the terms into
v1. Therefore, this comparison result shows
that the model constants of the main coeffi-
cients by the bridging method correspond with
those by the TSDIA.

Next, we show the fifth-order eddy-viscosity
representation of the Reynolds stress. For the
purpose of obtaining a simple expression, we
apply the Cayleigh-Hamilton theorem to the
result of the present analysis and neglect the
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terms with the Lagrangian derivative. We have
the fifth-order nonlinear expression

Bi; = 1"17}(1-1) + 1_‘2:’}(]-2) + 1_'37}(,;) + P4’-’}(f)

R
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This tensor polynomial (19) was found by Pope
(1975), but the entire set of coefficients was
not determined by anyone. The result of main
constants C, is shown in Table 2. In this result,
the main constants of I'y and I'1¢ are zero. The
former indicates that this expression satisfies
the frame invariance pointed out by Speziale
(1979, 1981). The model functions in egs.(20)
- (23) are written as
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Table 2: Model constants of main coefficients.

Ch [ C3 Cy
0123 0.0208 | 0.0123 0
Cs To rom Cs
Z0.00446 | 0.00369 | 0.000540 | -0.000893
Co Cio
70.000369 0
_ T 2200 4 202 20 (30
f5—1+ﬁ sT°C +§CWT , (30)

fo=1+4 L C3r20W 4 2GR, r2C®,  (31)

where 7 is a turbulence time-scale K/e, Cs =
—0.242, Cw = 0.100, v, = 0.123K?/e and
C™ are the invariants given in Appendix. The
functions f, arise from the high-order expan-
sion terms and the functional forms are compli-
cated. We cannot find any simple rule among
fn of the present result, and the model func-
tions in the same expansion order are different.
In the present analysis, many terms with the
Lagrangian derivative are derived. If we intro-
duce the terms in the eddy-viscosity represen-
tation, the fifth-order expression is not a closed
set of R;;.

APPLICATION
SHEAR FLOWS

Finally, we apply the present expression
with a standard set of K and € equations to
three homogeneous shear flows. The model
functions used in the present model are

TO HOMOGENEOUS

9 -1
f1=(1+0.0067' Sa,,sa,,) . (32)

-2
fo=(1+00222505:) ,  (33)

tentatively. The initial nondimensional shear
rates Sp are 3.38 in the large eddy simulation
of Bardina et al. (1983), 6.47 in the experi-
ment of Tavoularis and Corrsin (1981) and 50.0
in the direct numerical simulation of Lee et al.
(1990). Figure 1 shows the numerical results.
The standard K- model overpredicts the tur-
bulence energy in all the cases. Speziale (1996)
showed that in the case of Sy = 50.0 several
stress models overpredict the turbulence en-
ergy like the standard K-e model and pointed
out that the case is a strong nonequilibrium
case. The present model is in good agreement
with the reference data in all the cases.

CONCLUSION

In this work, we derived the fifth-order
eddy-viscosity representation perturbatively
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by the bridging theory with the second-order
results of the TSDIA analysis. The result gives
us some information related to the nonlinear
eddy-viscosity model.

APPENDIX: TENSOR ANALYSIS
In three dimensions the symmetric base ten-
sors constituted by S;; and Wj; are

Tsf) = Saasaﬂy (35)
T‘SZ) = SaaWap + SgaWaa, (36)
ng = WaaWaﬂ, (37)
Tésﬂ) = SaaSabWbB + SﬁaSabWba, (38)
Tc(v? = SaaWatWep + SpaWatWea,  (39)
T(£7B) = SaaSabWeeSes + S8aSabWeeSea, (40)
TC(Y%) = SaaSabWbCWCﬁ + S,@aSabWchca, (41)

Tc(yg) = WaaSabWchc,G
+WﬁaSabWchca7 (42)

T = W0 SusSpcWeaW,

af aalabObc ¥V cdVV dp
+W35aSabSocWeaWaa, (43)
and the invariants are

CY = S3Spa, (44)
0(2) = WapWha, (45)

C(g) = SabSchcaa (46)
0(4) = SabWchca, (47)
C® = Su4SpaWeaWee. (48)
The Cayleigh-Hamilton theory in three dimen-
sions is expressed by
AnaaBapCop + BaaCapAbg + CoaaAav Bog
+BoaAabChp + AaaCab Bog + Caa BapAps
= Aga (BavChs + CapByg)
+Baa (CabAbﬂ + Aabcbﬁ)
+Caa (AabByg + BapApg)
+ (Babcba - Baacbb) Aaﬂ
+ (CabAba - CaaAbb) Baﬁ
+ (AabBba — AaaBib) Cap
+ (AaaBbchc - AaaBbcch
_BaaCbcAcb - CaaAchcb

+AabBbcCca + CabBbcAca) 6a[3- (49)



Here A;j, B;;j and Cj; are arbitrary tensors in
three dimensions. The details of the tensor
analysis are reported by Spencer and Rivlin
(1959, 1960).

References

Bardina, J., Ferziger, J.M. and Reynolds,
W.C., 1983, “Improved turbulence models
based on large-eddy simulation of homoge-
neous incompressible turbulent flows”, Report
No.TF-19, Stanford University.

Craft, T.J., Launder, B.E. and Suga, K.,
1996, “Development and application of a cu-
bic eddy-viscosity model of turbulence”, Int.
J. Heat Fluid Flow, Vol. 17, pp. 108-115.

Kraichnan, R.H., 1964, “Direct-Interaction
Approximation for Shear and Thermally
Driven Turbulence”, Phys. Fluids, Vol. 7, pp.
1048-1062.

Lee, M.J., Kim, J. and Moin, P., 1990,
“Structure of turbulence at high shear rate”,
J. Fluid Mech., Vol. 216, pp. 561-583.

Okamoto, M., 1994, “Theoretical Investiga-
tion of an Eddy-Viscosity-Type Representation
of the Reynolds Stress”, J. Phys. Soc. Jpn.,
Vol. 63, pp. 2102-2122.

Okamoto, M. and Shima, N., 2000, “A Non-
linear K-¢ Model With a Third-Order Eddy-
Viscosity Representation”, Proceedings, Tur-
bulence, Heat and Mass Transfer 3, Nagano,
Y. et al., ed., Aichi Shuppan, Tokyo, pp. 389-
396.

Pope, S., 1975, “A more general effective-
viscosity hypothesis”, J. Fluid Mech., Vol. 72,
pp. 331-340.

Rubinstein, R. and Barton, J.M., 1990,
“Nonlinear Reynolds stress models and the
renormalization group”, Phys. Fluids A, Vol.
2, pp. 1472-1476.

Rubinstein, R. and Barton, J.M., 1991,
“Renormalization group analysis of anisotropic
diffusion in turbulent shear flows”, Phys. Flu-
ids A, Vol. 3, pp. 415-421.

Shih, T.H., Zhu, J. and Lumley, J.L., 1993,
“A Realizable Reynolds Stress Algebraic Equa-
tion Model”, Technical Report TM 105993,
NASA.

Spencer, A.J.M. and Rivlin, R.S., 1959,
“The Theory of Matrix Polynomials and its
Application to the Mechanics of Isotropic Con-
tinua”, Arch. Rat. Mech. Anal., Vol. 2, pp.
309-336.

Spencer, A.J.M. and Rivlin, R.S., 1960,
“Further Results in the Theory of Matrix Poly-
nomials”, Arch. Rat. Mech. Anal., Vol. 4, pp.
214-230.

171

Speziale, C.G., 1979, “Invariance of Turbu-
lent closure models”, Phys. Fluids, Vol. 178,
pp. 459-475.

Speziale, C.G., 1981, “Some interesting
properties of two-dimensional turbulence”,
Phys. Fluids, Vol. 22, pp. 1033-1037.

Speziale, C.G., 1987, “On nonlinear k—[ and
k — € models of turbulence”, J. Fluid Mech.,
Vol. 24, pp. 1425-1427.

Speziale, C.G., 1996, “Modeling of tur-
bulent transport equations”, Simulation and
Modeling of Turbulent Flows, Gatski, T.B. et
al., ed., Oxford University Press, Inc., New
York, pp. 185-242.

Tavouralis, S. and Corrsin, S., 1981, “Exper-
iments in nearly homogeneous turbulent shear
flow with a uniform mean temperature gradi-
ent. Part 17, J. Fluid Mech., Vol. 104, pp.
311-347.

Yoshizawa, A., 1984, “Statistical analysis of
the deviation of the Reynolds stress from its
eddy viscosity representation”, Phys. Fluids,
Vol. 27, pp. 1377-1387.

Yoshizawa, A., 1987, “Statistical modeling
of a transport equation for the kinetic energy
dissipation”, Phys. Fluids, Vol. 30, pp. 628-
631.

Yoshizawa, A., 1993, “Bridging between
eddy-viscosity-type and second-order turbu-
lence models through a two-scale turbulence
theory”, Phys. Rev. E, Vol. 48, pp. 273-281.

Yoshizawa, A. and Nisizima S., 1993, “A
nonequilibrium representation of the turbulent
viscosity based on a two-scale turbulence the-
ory”, Phys. Fluids A, Vol. 5, pp. 3302-3304.

Yakhot, V. and Orszag, S.A., 1986, “Renor-
malization group analysis of turbulence I. Ba-
sic theory”, J. Sci. Comp., Vol. 1, pp. 3-51.



(a) S0=3.38 /

K
N w e
N W w ¥,] S wn W
I

—
(V)]

b b b b b by

e
N -

0 AR RARANRARRY LARRERRRRN LARAR ARARY RARAE RERRN RARN

01 2 3 4 5 6 7 8 9
t

10

(c) S0=50.0

0 LA A AR AR LAREE ARRE LARRERRRRERERRY LRRE

01 2 3 4 5 6 7 8 9
t

Figure 1: Turbulence energy in homogeneous shear flows.
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