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ABSTRACT

Realizability conditions of a non-linear k -& model
are investigated firstly for classified mean flow
patterns with a singular point. Constraints on the
relation between ¢, and the strain and rotation
parameters (S ,Q ) are derived theoretically for each
fundamental flow patterns. Then, distributions of
turbulent intensities in a simple flow such as a plane
shear layer are derived analytically, using a non-
linear k-¢ model, and are utilized to identify the
model constants in the realizable Cy (5,Q)
relation.

INTRODUCTION

It is known that the relation between ¢, and the
strain and rotation parameters is sensitive to the
prediction of large vortices induced by shear layer
instability in turbulent flows (Hosoda, Kimura et
al.(1997), Hosoda, Sakurai et al.(1999), Kimura &
Hosoda(1999,2000)).

In view of this point, some necessary conditions
of a non-linear k - £ model with 2nd and 3rd order
terms are investigated for classified 2D & 3D mean
flow patterns with a singular point, based on the

realizability conditions by Schumann(1977). Fu et al.

(1997) investigated the conditions subjected to the
constants of Gatski & Spaziale model(1993). In this
study, constraints on the relation between ¢, and
the strain and rotation parameters (S ,Q ) are derived
theoretically for each fundamental flow patterns with
a singular point. It is also ensured that the relation
used by authors to predict large vortices in turbulent
flows satisfies these conditions.

Then, to identify the model constants in the
realizable ¢, -( S, Q) relation, distributions of
turbulent intensities in a simple flow such as a plane
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shear layer are derived analytically using a
non-linear k - ¢ model. It is indicated that the
method used to derive distributions of turbulent
intensities will be applicable to identify the general
realizable ¢, -(§,Q) relation.

CONSTITUTIVE LAW OF NON-LINEAR
k-g¢ MODEL

The constitutive law with quadratic terms can be
expressed as follows (Yoshizawa(1984)):
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Cy is not constant but a function of scalar

invariants such as strain parameter, S, and rotation
parameter, Q , defined by
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Eq.(1) is equivalent to the following expression
Eq.(5) derived by Gatski & Speziale(1993), which
are not satisfy the material frame indifference(FMI).
It is known that the FMI is not a necessary condition
for 3D turbulence (Speziale(1989)).
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In the 3rd-order model, the following cubic terms
are added to the right side of Eq.(1).
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CONSTRAINTS FOR CLASSIFIED FLOW
PATTERNS WITH A SINGULAR POINT
Constraints based on the realizability conditions are
investigated for a simple shear flow, 2D and 3D
mean flow patterns with a singular point, non-linear
flows such as a simple accelerated/decelerated shear
flow, flow near the longitudinal axis of a swirl jet.

Fundamental 2D and 3D mean flow patterns with
a singular point, which can be observed in flows
around an obstacle, are classified as shown in
Figures 1 and 2(Chong, et al.(1990))..

Simple Shear Flow
A simple shear flow can be expressed by Eq.(7).

U\ (0 a 0Yx
U,|=|0 0 ofx, N
U3 0 0 O X3

where U,;: components of velocity vectors,
spatial coordinates.

If we include the quadratic terms, 5;,Q; and
S are given by the following matrixes.
[2nd order model]
0 aa 0 0 o 0
Si=la 0 0Q;=-a 0 0
0 0 O 0 0 O
a® 00 000 0 0 0
Si;=| 0 0 0,5;={0 0 0|8;;=[0 a® 0
0 00 000 0 0 O
Sii=a*,85; =0,8y; =a’
k
§$=Q=—a 8)
£

The Reynolds stresses are described using Eq.(8)
as

wy _2 (21 2
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k3 (3 A
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k 3 3 3
iy _
e

Since the realizability inequalities are described as
W, >0, (10a)
m-ujuj 2uu; (10b)

the constraints on ¢ u 1s reduced to Eq.(11)
(Hosoda, Sakurai et al.(1999)). Einstein's summation
convention is not used in Eq.(10).
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Fig.1
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2-D flow patterns with a singular point

Fig.2 3-D flow patterns with a singular point
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Fig.3 Realizability constraints for a simple shear flow
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If we include the cubic terms, Eq.(11b) becomes
to
c < (G +G)+ (C1+C3)2+f1
#736(C, - Cs P8t +{(2C, - Gy X - 2C3)-36(Cy — C5)}S2 +9

9
fi=4336(C, — C5)* 8% +(2C, - G, XC, - 2C5) - 36(C, — Cs )+ =
SZ

(12)
Fig.3 shows Eqgs.(11) and (12) with ¢, =04,
C,=0,C,=-0.13,C, =-0.02 and C; =0. Eq.(11b)
gives severer condition than Eq(11a) (the condition
of non-negative turbulent intensity). Including the
cubic terms, Eq.(6) is more restrictive on the
realizability. '

2-D Flow Patterns with a Singular Point
Fundamental flow patterns with a singular point
shown in Fig.1 can be expressed by Eq.(13).

Ul a a 0 X
Uy|=|-a —a 0| x, 13)
U3 0 0 0 X3

where aand o : positive constants.



S i Qy and Siik with the quadratic terms, Eq.(2),

are glven by the following matrixes.
[2nd order model]
2¢ 0 O 0 2a O
S;=|0 -2a 0[Q;=|-22 0 0
0 0 0 0 0 0
a+a” -2ax 0 0 0
S =| —2aa a*+a? o} Sy=| 0 a*-a* 0}
0 0 0 0 0

ae+o?  2aa
S3;=| 2acx a* +a?
0 0

Sy = 2(a’ +a2),S2H =2(a®> - 0?),Sy; = 2(a* +a°)
s=2%4 0-2%4 (14)
£ £
A singular point is classified as follows:
a > ¢ :saddle point, a < o : focal point

The Reynolds stresses are described as

ulu‘ cS+§+—2(C1+C2+C3)SZ+—(C1 G +G)Q?
——uz_uz=c S+£+_“(cl+C2+C3)SZ+—”(CI—C2+C3)QZ
ko312 12

By L2 S0+t )0 - €, + )

k 3 6 6

iy

=32‘i(c3—c,)sa- (15)

After some examinations, it is shown that Eq.(16)
derived by the Schwartz inequality, Eq.(10b), gives
severer condition than the conditions by Eq.(10a).

¢y _2 1 (16)
3
[S"Hi(@ -q)Q? —fz]

fz— {(C1+C2+C3)32 (@
Fig.4 shows Eq.(16) for §=Q.

3-D Flow Patterns with a Singular Point

The similar analysis can be applied to 3-D flow

patterns with a singular points shown in Fig.2.
Since the singular points are classified as the

saddle-nodal point and the focal point, the derivation

of necessary conditions are carried out separately.

Saddle-Nodal Point In the case of saddle-
nodal point, the flow is given by

-C,+ c3)92}

U, a 0 0)x
U, |=|0 b 0fx,]| - (17
U, 0 0 chxs
The continuity equation is described as the
constraint on a,b and c.
a+b+c=0 (18)
S;»Q; and S, with the quadratic terms are
given by the following matrixes.
[2nd order model]

157

2 0 0 000

S;=[0 2 0]Q;=/0 00

0 0 2 000
a® 0 0 a¢ 0 0 a 0 0
Siy=| 0 b 0]Sy=|0 b 0|S;={0 b 0
0 0 (2 0 0 (2 0 0 ¢

Slu - S2u - S3ii =a +b2 tc

S=2-Va?+bp*+2,Q O,T_l( )(a +b3+c)

where T = (k/€)’S;S ;S,:/24- (19)

One component of turbulent intensities is given by
the following equation.

2
Ugy =—cy k—2b+—2—k
£ 3 (20)
k3 1 , 2,2 1 2)
+cy—(C +Cy+C3)| ——a? +=b* —=c
Cu 82( 1+C2 3)[ 39713 3

Since a3 +b3+c3 =3abc with a+b+c=0, the
following relation

a?+b? +c? =18—S2
2 k2
can be reduced to
x> +3px+q=0 (21a)

with

2 3
1(¢ 2 £
bp=——{=Z| S*%,g={=| T (21b)
rmarhp lz(k) 1 (k]

u3=%(—q+ q2+4p3).v3=%(-q- g +4p*). (2lc)
b+c and c+a alsosatisfy Eq.(21).

If the roots of Eq.(21c) are represented by
ug = ]u0|(cos Buo +isin 0,,0
Vo = |u0|(cos 0,, —ising, ),
the solutions of Eq.(21a) are given by
x = 2|u0|cos 6., I“O' <x < 2|u0'
% = =2lug|cos(8,, —7/3), = 2Jug| < x, < —Juo| - (22)
x3 ==2ug|cos(8,, +7/3), —Juo| < x3 < Jug|
where

iccor-c5(E

Though the range of 6,, is restricted to

(23)

0<6, <m/3,27/3<6, <7,4rn/3<6, <57/3
Uy Uy o

because of sin36?u0 >0, it is sufficient to consider
one of these ranges.
x;,Xp,%3 also satisfy the following constraint
dueto a+b+c=0
x1+x2 +X3 =0 (24)
If we take the following equation as the relation
between a,b,c and x,x,,x;,



@ x| =a+b,x, =b+c,x3=c+a

®x1=b+c,x2=c+a,x3=a+b’ (25)
@ x =c+a,xy =a+b,x3=b+c

each solutions of Eq.(21a) are given by
D = K 2 K22
uzuz—C’uzz—(Cl'f'Cz‘Fc:;)X} +2CF7X3+§IC

1
-~z G +C, +Gy)kS?

3 2

k 2 k 2
—(G+Cy+C3)xy" +2¢c,—xp +—k
6(1 2+C3)x 2t

D =cu ,26)

1
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k3 2

2
8—2(C1 + Cz +C3)x1 + 2(.‘;1

— k 2
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1
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According to these equations, the condition of
non-negative turbulent intensities are reduced to

deg

3k

£
—S<x<

K’ 2 K2, 0n
Cu 8—2(C1 +C2 +C3)x +2C‘u-—£—x+§k
1
~<eu(Ci+Cy +CkS? >0
Since the value of Eq.(27) is minimum at
£ 1
gy == (28)
Tk C 4 Cy +Cy
the constraints are described as
B y 4(C,+Cy+Cy) (292)
C,+C, +C, LG +Cy+Cy)*S? +6
S <_i_ .
Ci+Cy+Cy
2 1
c, <
2 1 (29b)

713
S{_—E(C' +C, +C3)S}

NE)

4
=5+ 4Gy

min

Focal Point In the case of focal point, the flow
is given by

U (a 0 0)x
Uy|=|0 b a|x (30)
Us) \0 —a b)x

The constraint derived by the
is

continuity equation

a+2b=0. (31
S;i>Qy and Sk with the quadratic terms are
given by the following matrixes.
[2nd order model]
2a¢ 0 O 0 0 0
S;={0 2 0 ,Q2;=(0 0 2«
0 0 2 0 -2 0
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Fig.4 Realizability constraints for 2-D flows
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Fig.6 Realizability constraints for 3-D flows
with a focal point
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The components of Reynolds stress tensors are
described as:

2

M _ iS+£+ C+C,+C 5
¢ Tt rtrtalarar ey
QZ
_C/I(Cl - C2 +C3)? (333)
- - 2
wy s Lo 2 o +CoSl
c Tk apttyalararey
QZ
+¢, (G -G, +C3)E (33b)
Wty = gty = iy =0 (33c)

The constraints on ¢ u derived from Egs.(29),
(33a) and (33b) are shown in Fig.5 and Fig.6.



Non-Linear Flows

The constraints of simple non-linear flows are
investigated by using the flow model described
below:

[simple accelerated/decelerated shear flow]

2
X

Uy =bypx,, Uy = —bo—;— (b, : constant)

[flow near the longitudinal axis of a swirl jet]
U=2U,=b2+a2 Uy =22 +b2%
A X X X X
The results are omitted in this paper because the
constraints are not severe compared with ones
mentioned above.

DISTRIBUTIONS OF TURBULENT
INTENSITIES IN A SIMPLE SHEAR FLOW
The distributions of turbulent intensities in a simple
flow such as a plane shear layer are derived
analytically using a non-linear & - £ model to
identify the model constants in the realizable
(cy»C,,C,,C3)-(5,Q) relation.

Simple Shear Flow
The non-dimensional turbulent intensities are

w2, 2G-GCg
k 3 3

Uty _ E+Cﬂ 26,-C 52 (34)
k 3 3

Uy 2

U3ty =2 ., C;+C; 52
k 3 3

Anisotropic tensors, m,;,m,, and m,; defined as
Eq.(35) are plotted against the ratio of production
to dissipation, ¢,S?, in Fig.7 (dotted line).

my =(ue, -1 38,k) k (35)
‘The agreement with the previous experimental
results becomes worse with the increase of ¢ #Sz.
We therefore introduced following functional forms
for ¢, -C; (Kimura & Hosoda(2000)).
C, =0.4f4(S),Cy =0,C3 =—0.13f(S)
fs(S)=(+cs8*)™ (36)
The relation between m; and cﬂs2 in Eq.(36)
with ¢g =0.02 is plotted in Fig.7(solid lines). The
results in Eq.(36) agree with the experimental
results.

Plane Shear Layer
The velocity distribution in a plane shear layer is
approximated by the tanh-type distribution shown in
Fig.8.
U, =U, tanh(ﬂ]
ly
Using Taylor expansion, Eq.(37) can be expressed

in the vicinity of x, =0as

(37
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Fig.8 Tanh-type velocity distribution
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To derive the approximate solution of turbulent
intensities, ¢, is approximated by Eq.(39) because

of §=Q.

(38)

3
U =ax,-bx,", a=

1
c, =¢c, —m— (39)
“ Ho 1+CDS2

The functional forms for k-& are
k=ko+kyx*, e=gy+,x°. (40)
The non-dimensional expressions on kg, k,, &y, €,

are
3

a a
ko :Tpo»kz =a2Pz,€o =7‘Io,€2 =a3q2 (41)

Substituting Eqgs.(38)-(41) to k-& equations, the
relations between p,, p,.qo.q, are derived as
follows:

2 2 2
— 0y {(C,uo —Cp )Po2 ) KCDPO +4q ) 42)
P2 = 2 2 2
2¢y, Po (Po +4q9 )
, = o-sf3
32 2
2¢y,Po (Po +¢pqo )

(43)

2 3
fz=—(cqchy, —2¢pCe, )P0 90" —

4 5
~¢p (Csl Cuy —€DCe, )Po 4o+ Ce, 90
Fig.9 shows an example of distributions of k-¢
with  p, =0.04,g, =0.0082.¢c,, =0.09,c, =0.02,

¢, =19.¢c, =20,0, =14,0,=13. k' and ¢ is

defined as

k':ki,é":Ei_
3 2
a a

The numerical value of p, =0.04 is evaluated from
the experiment by Wygnanski & Fiedler(1969).



The distributions of turbulent intensities can be
calculated by using Fig.9. Fig.10 shows the results
with ¢ =0.03, which should be compared with the

experimental results.

CONCLUSIONS

Constraints on the relation between ¢, and the
strain and rotation parameters (S ,Q ) were derived
for some fundamental flow patterns with a singular
point. Then, distributions of turbulent intensities in a
simple flow such as a plane shear layer were shown
as the solutions of a non-linear k - &£ model. It was
indicated that the method used in this study will be
utilized to identify the realizable ¢ u -(S,Q)
relation.
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