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ABSTRACT

In the present work, the structure-based
model (SBM) was evaluated in a turbulent flow
in a cylindrical pipe rotating around its longi-
tudinal axis. It was found that the SBM is
able to predict the flow accurately at various
Reynolds numbers and under stronger rotation
than what is possible with the Reynolds stress
transport models (RSTMs). In a fully devel-
oped pipe flow, the SBM, being a linear model,
slightly improves the profiles obtained with the
non-linear RSTM (Speziale et al., 2000). How-
ever, like the RSTMs do, the SBM significantly
overpredicts the turbulent kinetic energy level
in this part of flow in comparison with the re-
sults of experiments.

INTRODUCTION

Mean rotation induces dynamical effects
on turbulence that enter transport equations
through the non-local pressure-containing cor-
relation. It was shown in Reynolds & Kassinos
(1995) and later in Kassinos et al. (2001) that
to describe this effect accurately in inhomoge-
neous turbulence, a one-point turbulence clo-
sure should include a minimal set of indepen-
dent tensors that carry information not con-
tained in the Reynolds stresses R;;. This set of
tensors include, in addition to R;j, two second-
rank tensors: dimensionality D;; and circulic-
ity F;;j, as well as the third-rank stropholy-
sis tensor Q;.. Relying on these ideas, the
SBM has been developed (Reynolds & Kassi-
nos, 1995; Kassinos & Reynolds, 1997) and
tested successfully for a wide range of defor-
mations of homogeneous turbulence as well as
for some simple wall-bounded flows (Kassinos
et al., 2000).

Currently, the SBM is being used for the
computation of complex inhomogeneous turbu-
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lent flows with imposed system rotation. Here
we report on the case of a turbulent flow in
an axially rotating pipe. Despite the simple
geometry, the structure of turbulence in a ro-
tating pipe flow changes substantially both as
the flow develops with downstream distance
from the pipe entrance and with increasing ro-
tation rate, and as a result this flow serves as
a severe benchmark for any turbulence closure.
From a practical point of view, the modeling
of a turbulent pipe flow is of interest because
it relates to phenomena encountered in various
engineering systems involving boundary layers
on rotating surfaces, e.g., heat exchangers and
rotor cooling systems.

MODEL OUTLINE

Information carried by the turbulence struc-
ture tensors and the Reynolds stresses can be
obtained from a single third-rank tensor Q
(Reynolds & Kassinos, 1995), which relates to
the other tensors as:

Dij = fimepmj7 Fij = Eimejpm

Rij =< uiuj >= €impQmijp, Q;jk =
1
6 [Qijk + Qjki + Quij + Qikj + Qjir + Qkja] (1)
Therefore, the SBM considered in this work,
includes a model transport equation for the
one-point tensor Q, which in an inhomoge-

neous flow takes the form (Kassinos et al.,
2000):

% = Vomn + "C'_VTRmn Qijk m
Dt 0Q ’ n
+k fijr + Hij (2)

1
where Hijlc = —Gijimk - iGtmetikij

1 1
+§(Qimk + Qkmi) — TQijk



Here, G;; = U, j, 2k = q*> = Ry;, € is the dissi-
pation rate, d;; is the Kronecker delta tensor,
€;jk is the Levi-Civita alternating tensor, v is
the kinematic viscosity. Time scale T' is mod-
eled as T = 1/(k/e)? + 36 - v/e (Durbin, 1993).
Model coefficients are: C), = 0.22 and 0g = 1.
Near-wall effects are incorporated in (2)
through an elliptic relaxation tensorial func-
tion f;jx. This function models redistributive
processes in inhomogeneous turbulence and its
components are found from an equation
ik
: 3)

similar to the one suggested in Durbin (1993).
II;jx describes redistributive processes in ho-
mogeneous turbulence. The model for II;jy is
discussed in detail in Kassinos et al. (2000).

For the length scale L, various functional
forms have been tested. However, the best re-
sults were obtained using a simple function like
LT =1, at y* <60, and Lt =0, at y* > 60.
It is worth noting that in the initial section
of the rotating pipe, where strong suppression
of turbulence statistics occurs, the influence of
this length scale is rather weak. At a rotation
number of N = 0.6 both the peak value and
the extent of the profile of L from the pipe
wall seem to have practically no influence on
the results of the calculations. The rotation
number N is defined as the ratio of the pipe
wall velocity W, to the mean flow velocity at
the pipe center U,.

Because the main goal of the present work
was to compare the performance of the Q;jx-
equation with that of the R;j-equation in a
complex rotated turbulent flow, the standard
equation for the dissipation rate

L*V2fiik — fijk = —

De c,
D= l:(lldjk + -O:-TRjk> €’j] .
1
*f (COE - CsP) (4)
was used as the basic one. Here, P = —R;;U; ;.

Model coefficients are: C, = 11/6, o, = 1.1.
To describe a flow at different Reynolds num-
bers, the coefficient C; has to vary from 1.58
at Re, = 4-10* to 1.65 at Re, = 7 - 103.
In both cases this value differs from the value
found optimal for a homogeneous flow, that is,
C; = 1.5. The similar situation is observed
when the RSTMs are used.

An alternative to equation (4) was also
tested. It was shown in Kurbatskii et al.
(1995), that if one assumes the model coeffi-
cient C, to be a function of the Richardson
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number
C; = max(1.4,C,(1 — CrRi)), Cgr=2
aw W
— ar T

(%) +(%)

the effects of moderate rotation on a flow in
an initial pipe section can be successfully re-
produced. Here, U and W are the axial and
the angular mean velocity components respec-
tively, r is the radial coordinate. The restric-
tive condition on the value of Cj is imposed to
avoid excessive values of the dissipation rate
close to a wall, which can occur under rota-
tion.

The modification of C, proposed by Kur-
batskii et al. (1995) is applied in the present

work
77 = |(v0i+ 227R)
— = ||véjr + —TRjr )€ ;
Dt ik 0. jk | €3 7k
2 (Ce-CP) ()

Thus, two sets of model equations: (2)—(4)
and (2), (3), (5), with the standard transport
equations for the mean velocity components
form two models: Q1 and Q2, investigated in
this work.

NUMERICAL PROCEDURE

To compute a pipe flow, all equations were
written using the boundary layer approxima-
tion in the axisymmetric cylindrical frame of
reference ' = (z,r,p), where z, r, and ¢
are axial, radial, and angular coordinates re-
spectively. The control volume technique was
used to solve transport equations. Equation
(3) was solved using a standard finite-difference
scheme. The grid was non-uniform in r, with
the total number of nodes being 64 for Re,
U,D/v = 4-10* and 81 for Re, = 7-10° (D is
the pipe diameter, R = D/2).

In the computation we used the same con-
ditions as those in the experiments (e.g.,
Kikuyama et al., 1983; Zaets et al., 1985),
where a swirling flow was obtained by con-
veying a fully-developed turbulent flow from
a stationary cylindrical pipe into a rotating
cylindrical section of the same diameter.

On the pipe axis the boundary conditions

are: BU 6
(3
=3 =W=0 U=U,
9Qsji =0, ifi£j#k
or



Qijr =0, ifi=j, orj=k ori=k
At the wall,

2vk
U=Qijk=0, W=W,, ey=—5"
Yw

where k,, is the value of the turbulent kinetic
energy at the last grid node next to the wall
and y,, is the distance between the wall and
that node. This last condition ensures that
kw = O(y3).

Near a pipe wall, the behavior of Q;jx-
components should be consistent with the cor-
rect behavior of the corresponding Reynolds
stresses in accordance with (1). Such behavior
of Q;;x was obtained with applying appropriate
boundary conditions on f;ji:

Fo 2002 Qapy

= where
apy Ew y’?u ’

(aBr)=(zz), (ppz), (x09), (P22), (Pr2),(2reY)

Fiap = —F5d Foe =15
sop = —F8) 155 = —FG)
ror = —02f{80, fig) = —08f(3)
sor = 0265, 1) =-08f5)

The rest of the components are equal to zero
at the wall. On the pipe axis, the boundary
conditions for f;;; are the same as for Q;;i.

RESULTS AND DISCUSSION

Stationary pipe

Without rotation, both models: Q1 and
Q2, coincide. Calculations have been done at
two Reynolds numbers: Re, = 7 - 103 and
Re, = 4 - 10%, to verify the ability of the Q-
model to give reasonable results in both low
and high Reynolds number regimes. As shown
in Figures 1 and 2, the model gives quite good
results.

For comparison, profiles obtained with the
linear (IP) RSTM (Kurbatskii et al., 1995)
are also presented. Though this model re-
produces turbulent characteristics and mean
velocity well at the high Reynolds number, it
describes only qualitatively the features of the
low Reynolds number flow.

As  experiments demonstrate (e.g.,
Kikuyama et al., 1983; Zaets et al., 1985),
it is possible to distinguish two regions in a
rotating pipe flow with different turbulence
structure. In the initial section of a pipe with
length of about 30D, strong suppression of
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turbulence characteristics is observed. After
suppression, however, they increase in value
and eventually stabilize on a high level. This
is the region of fully developed turbulence,
which is observed at about 170D for any Re.

Initial section of a rotating pipe

Calculations have been done at Re, = 4-10%.
Figures 3,4,6 correspond to the pipe section
z/D = 25. For comparison, profiles obtained
with the RSTMs: IP and non-linear (SSG)
(Speziale et al., 2000), also are given. In both
RSTMs, damping functions (Gibson & Laun-
der, 1978) were applied to describe wall effects.

It was found that to reproduce correctly the
effect of strong turbulence suppression in this
region, the Q-model as well as the IP and
the SSG models should include modified e-
equation (5). We denote such non-linear model
as SSG1.

The Q-model describes quite well the axial
velocity profile in the whole flow area: from
the wall to the pipe axis at different rotation
numbers (Fig. 3). Moreover, the Q-model com-
putes correctly the dynamics of the axial veloc-
ity with increasing rotation. That is, at the low
rotation number N = 0.15, the axis value of U
slightly decreases, but with further increase of
N, it begins to grow. The behavior of the an-
gular component of the mean flow velocity also
is reproduced well. Turbulent statistics are de-
scribed very well, especially near the pipe axis
(Figs. 4,6). This is an important result, be-
cause turbulent transport at the core of a pipe
flow at moderate swirl is similar to turbulent
transport in concentrated vortex formations in
the atmosphere.

Note that in the initial pipe section, the per-
formance of two RSTMs are comparable with
each other.

Fully developed flow

With increasing rotation and distance from
the pipe entrance, the Q2-model as well as the
IP and the SSG1 models predict full suppres-
sion of the turbulence in contradiction with
experimental data. A fully developed tur-
bulent flow in a rotating pipe was computed
with the Ql-model. The results are compared
(Fig. 7) with the data obtained with the SSG
model in which equation (4) is used to describe
dissipative processes and near-wall effects are
taken into account through the elliptic relax-
ation scheme (Durbin, 1993). We denote this
model as SSG2.

The model reproduces better than the



RSTMs the evolution of the axial component
of the mean velocity. For the angular veloc-
ity, the computational results obtained with
the Q1l-model are close to the profiles obtained
with the linear RSTMs (Pettersson et al., 1998;
Speziale et al., 2000; Kurbatskii & Poroseva,
1999). The SSG2 model provides better agree-
ment for W with experimental data. The shear
stresses are reproduced well by the Ql-model.
However, in this part of the flow, like the
RSTMs do, the Ql-model significantly over-
predicts the turbulent kinetic energy level in
comparison with experimental data.

Most importantly, the Q-model is able to
reproduce the correct behavior of turbulence
characteristics at relatively high rotation rates,
e.g., N = 1, whereas the RSTMs predict re-
laminarization of the flow (Pettersson et al.,
1998) at this NV in contrast to the experiments
(Kikuyama et al., 1983), which show no sign of
turbulence disappearance even at considerably
higher N.

CONCLUSIONS

The Q-model is able to predict the flow
accurately at various Reynolds numbers. In
a fully developed pipe flow at moderate ro-
tation numbers, the Q-model, being linear,
slightly improves the profiles obtained with the
non-linear RSTM, which gives the best results
among the RSTMs for this part of flow (Pet-
tersson et al., 1998). Most importantly, the Q-
model is able to reproduce the correct behav-
ior of turbulence characteristics at relatively
high rotation rates, e.g., N = 1, whereas the
RSTMs predict relaminarization of the flow in
contrast to experiments. Also, under some pa-
rameter combinations (N, Re) computations
using the RSTMs fail to converge (Pettersson
et al., 1998; Kurbatskii & Poroseva, 1999),
whereas such difficulties have not been encoun-
tered with the Q-model.

However, the Q-model as tested in this
work, does not solve all problems. One of the
possible reasons for this, is that in order to
be consistent, a one-point turbulence closure
based on the transport equation for Q should
also include structure information in the equa-
tion for the dissipation rate e. We are currently
working in this direction. In the RSTMs, such
modifications would not be possible since they
do not carry the necessary information.
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Figure 1: Stationary pipe flow (Reo = 7 - 103): (— ) Q-model, (®) DNS data (Eggels et al., 1994)
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