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ABSTRACT

The Reynolds-averaged Navier-Stokes ap-
proach will continue as the primary method-
ology used in the foreseeable future for the
numerical solution of complex turbulent fluid
flow problems. With this continuing demand
and the continuing increase in computational
capabilities, higher-order closures, such as al-
gebraic and differential Reynolds stress mod-
els, will be more extensively utilized. Even
though such closures are currently available,
modeling improvements will be required in a
variety of terms that appear in these formu-
lations to satisfy the ever-increasing accuracy
requirements. Beyond these approaches, as
computational capabilities increase, will be the
trend toward the “direct” solution of turbulent
flow fields. In the interim, however, composite
methods, that bridge the gap between partial
and total resolution of the turbulence scales,
will be required.

INTRODUCTION

Prediction and control of turbulence will
continue to be an important part of many fluid
flow studies of technological importance. Asso-
ciated with turbulent flow prediction and con-
trol comes the need to choose a methodology
that can be applied to such flows. Obviously,
solving the full time-dependent Navier-Stokes
equations with a sufficiently accurate numeri-
cal technique and sufficiently well-resolved grid
is most desirable. In such methodologies, well
known grid resolution and numerical algorithm
issues arise, so it is necessary to turn to alter-
native methodologies that assume in each case
their own set of constraints.

Nevertheless, over the last thirty years nu-
merical codes and turbulence models devel-
oped for the solution of turbulent flow fields
have reached a point of maturity where a small
but vibrant industry has emerged that provides
its customers with the tools needed to predict a

rather complex array of flows. Unfortunately,
such ease of use and availability to numerous
users in a wide variety of technical disciplines
has not been without its drawbacks.

In this environment, a large number of flow
field predictions are reported that are too
numerous and diversified to thoroughly ver-
ify. Apparently minor alterations to published
models are continuously made and undocu-
mented — with minimal regard for overall con-
sequences, or full understanding of model ori-
gin and calibration. Factors, such as these,
lead to transparent improvements to existing
models, and/or proliferation of “new” models.

Demand has increased for an improved level
of performance associated with the applica-
tion of the various predictive techniques. This
has been especially true of Reynolds averaged
Navier-Stokes (RANS) models, probably be-
cause that they have been “under develop-
ment” for the longest period. Two criteria that
should be met for improved performance levels
are the ability to correctly replicate the flows to
be predicted, and once done, to correctly solve
the flow problem. Unfortunately, while it is
now relatively easy to get numerical answers,
meeting these two criteria of doing the right
problem and doing the problem right is a more
challenging task.

With the need to meet these performance
criteria, there have been attempts in the last
few years to develop a process by which users
can follow a set of guidelines in order to formu-
late or replicate the right problem, and then
use the right tools to get the necessary an-
swers. One such attempt initiated by NASA
(see Bardina et al. 1997), involved develop-
ment of a procedure for validation and test-
ing of current state-of-the-art turbulence mod-
els. A more recent and complete endeavor
on the part of ERCOFTAC (Casey and Win-
tergerste, 2000) has resulted in a document
“intended as a practical guide giving best prac-
tice advice for achieving high-quality industrial



Computational Fluid Dynamics (CFD) sim-
ulations using the Reynolds-averaged Navier-
Stokes (RANS) equations.” Both of these
initiatives, especially the ERCOFTAC effort,
attempt to provide practical information to
the technical, but non-specialist user of CFD
codes.

A separate though related issue is the nu-
merical solution of equations in a RANS for-
mulation. In many cases, assessment of model
performance has not been sufficiently sepa-
rated from numerical issues, leading to model
refinements predicated on purely numerical is-
sues rather than on modeling the proper turbu-
lent physics. The previously mentioned proce-
dure guides will hopefully provide for improved
assessments.

In the following sections, the algebraic and
differential Reynolds stress levels of closure will
be discussed. Within these levels, deficiencies
and areas of improvement for higher-order cor-
relation closure models will be discussed. Fi-
nally, the outlook for the development of mod-
els that provide a linkage between the tradi-
tional RANS-type models and the full Navier-
Stokes simulations will be addressed.

REYNOLDS-AVERAGED NAVIER-STOKES
CLOSURE SCHEMES

As noted, an optimal methodology for solv-
ing turbulent flow fields would be to efficiently
and accurately solve the Navier-Stokes equa-
tions directly. Unfortunately, since the ratio
of integral scales to Kolmogorov scales in a

turbulent flow is (’)(Re?“), such direct com-
putations are not realistic, and it is necessary
to formulate alternative methodologies. One
alternative, introduced over three decades ago,
is the large-eddy simulation (LES) approach.
This methodology was intended to bridge the
gap between full numerical simulations of the
Navier-Stokes equations and the Reynolds-
averaged Navier-Stokes approach. While its
use has become widespread, ever increasing
demands on performance accuracy has neces-
sitated a more careful scrutiny of the various
subgrid scale models required, as well as their
interaction with the accompanying numerical
algorithm. Nevertheless, as computer power
and memory increases, this methodology will
be an increasingly important tool in the future.

The Reynolds-averaged approach to analyz-
ing turbulent flow fields dates back over a cen-
tury to Osborne Reynolds, who assumed that
velocity and pressure fields could be decom-
posed into a mean component and a fluctuating

component. The resulting RANS equations
require closure for the higher-order turbulent
correlations that appear, and it is within this
context that RANS modeling for turbulent
flows has evolved. Figure 1 shows a hierar-
chy of closure models formulated to use with
RANS equations for the mean flow. The fo-
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Figure 1: Hierarchy of RANS solution methods for turbulent
flow problems

cus here will be limited to single-point closures
that form the basis for almost all practical flow
field computations.

Inherent limitations are immediately intro-
duced into the modeling process when re-
stricted to single-point closures. For example,
correlations involving fluctuating pressure, a
nonlocal quantity, are constrained to point-
wise (local) closures that may not correctly
mimic the physical process. Two-point clo-
sures can account for these non-local effects,
but are significantly more complex to have
only been extensively studied in homogeneous
flows (see the review by Cambon and Scott
(1999) for more details). Nevertheless, models
of such terms (and others with similar nonlocal
characteristics) have been developed for single-
point closures, and have been successfully used
throughout the years.

Another limitation in single-point closures is
the lack of eddy structure information. While
two-point closures are capable of tracking such
behavior, over the last decade Reynolds and
Kassinos (see Kassinos and Reynolds 1997)
have been developing a structure-based model
in the context of single-point closures. Such
models are still in the development stage but
can provide information on both componental-
ity and dimensionality of turbulence.

CURRENT HIGH-ORDER STRATEGIES
With the large number of turbulence mod-



els available, it is easily seen how practitioners
of computational fluid dynamics can become
increasingly confused by the available choices.
The levels of closure shown in Fig. 1 divide the
available models into groups sharing certain
common traits. Within each level the detailed
form of models may vary, but each member of a
particular level will exhibit the same character-
istic features. The focus here will be on the two
highest levels: the Reynolds-stress models and
the (explicit) algebraic stress models. Within
these two closure levels, current opportunities
for improved models can be identified.

Reynolds-stress models

At present, Reynolds-stress models (RSMs)
are the highest level of closure, and the most
common second-moment closures used in prac-
tical calculations. It is at this level where dis-
tinct differences in form exist between the in-
compressible and compressible transport equa-
tions, so it is advantageous to start with the
compressible form of the equations and then
proceed to the incompressible form. In com-
pressible flows, the decomposition of the in-
stantaneous variables can be in terms of ei-
ther the usual Reynolds averaged variables or
Favre-averaged variables

f=F+f=Ff+1" (1)

With this decomposition, it is straightforward,
although tedious, to derive the Reynolds-aver-
aged equation for the Reynolds stress tensor in
Favre variables, pr;; (= pu;'u). A more useful
form here is the correspondlng transport equa-
tion for the Reynolds stress anisotropy tensor,
bij, 5
_ Tij %
given by

Dt 2K (Dm B §D5”> N _gT o
2
=55 + (bikxWij —

—3 Wikbi;)

2
- (bikskj + Szkbk] - §bmnsmn623)

A (e _ 254 )

oK (H —31 % 3)
1

+2I§ Mz] + M(Szj

where pK is the turbulent kinetic energy, T
(= K/¢) is a turbulent time scale, S;; is the

(traceless) strain rate tensor, and W;; is the
rotation rate tensor (S;; + Wi; = 0u;/0z;).
Higher-order correlations also appear in Eq.
(3), including the turbulent transport and vis-
cous diffusion term
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where the correlation has been partitioned into
a deviatoric part and a dilatational part,
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the turbulent dissipation rate
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where the isotropic part is assumed partitioned
into a solenoidal part and a dilatational part
(the deviatoric components d;; are associated
with the solenoidal part); and the contribution
due to the mass flux given by
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where M = M;;/2. Finally, the coefficient g is
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where P = —2Kb;Sk; (recall Sy; is traceless).

Once expressed in Favre variables, it is read-
ily seen which terms are directly related to
compressibility effects, and which terms are
amenable to variable mean density extensions
of their incompressible counterparts. From Eq.
(3), three terms can be identified that are di-
rectly affected by compressibility. These are
the pressure-dilatation szj , Eq. (4c), the tur-
bulent energy dissipation rate ¢, Eq. (4d),



and the mass flux pu/, Eq. (4e). In addition
to these three terms, the turbulent heat flux
is also required since it appears in the con-
servation equation for the mean total energy
as well as (indirectly) in the pressure-velocity
correlation term (see Eq. (10) below). Cur-
rently, the remaining terms in the equation are
handled through variable mean density exten-
sions of their incompressible forms. As noted,
dissipation rate ¢ has been partitioned into a
solenoidal and dilatational part with effects
of compressibility isolated in the dilatational
part, and the solenoidal part € is treated as in
the incompressible case. For constant mean
density fields, these compressible terms are
neglected and the transport equation for the
Reynolds stress tensor takes on its incompress-
ible form.

Before assessing the current models for some
of these unknown correlations, a method for
obtaining explicit algebraic stress models using
tensor representations will be outlined. This
methodology uses Eq. (3) with Db;;/Dt, and
an assumed form for turbulent transport and
viscous diffusion. This allows for the devel-
opment of explicit models without introducing
any new closure coefficients other than those
that appear in the full differential form.

Explicit tensor representations

' In the current environment, where develop-
ment of improved turbulence closure models
is driven more from the practical engineering
side rather than the academic side, cost/bene-
fit ratios become important criteria for decid-
ing which closure methodology to use. When
coupled with the reality that only a small
subset of government or industrial production
codes have fully implemented second-moment
closures, it becomes more apparent why the
Reynolds stress models are rather infrequently
used in an applications oriented environment.
In the future, this should change as the user
community becomes more acclimated to in-
creasingly complex closure models.

With this background, the focus in this sub-
section will be on a level of closure that retains
a key aspect of second-moment closures — the
ability to predict Reynolds stress anisotropies
— but also retains the same type of numerical
robustness associated with the two-equation,
linear eddy viscosity model (LEVM) level of
closure. This level of nonlinear eddy viscos-
ity models (NLEVMs) has existed for some
time and is adapted to accounting for turbu-
lent stress anisotropies that may arise in the

flow.

In both NLEVMs and explicit algebraic
stress models (EASMs), the proper choice
for tensor representation is dependent on the
functional dependencies associated with the
Reynolds stress pr;;, or the corresponding
anisotropy tensor b;;. For example, it is com-
mon to assume that the functional dependency
of the anisotropy tensor is given by

bij = b;j(Ski, Wi, 7) = b(S, W, 7). (6)

A polynomial expansion is then assumed that
is a subset of a general set of basis tensors
(Pope 1975, Gatski and Jongen 2000) de-
duced from the functional dependencies of the
Reynolds stress anisotropy tensor. What dis-
tinguishes the two approaches is the method
by which the expansion coefficients are de-
termined. For the NLEVMs, expansion coef-
ficients are determined based on calibrations
with experimental or numerical data, and on
some physical consistency constraints. For the
EASMs, the expansion coefficients are derived
consistent with a full differential Reynolds
stress equation such as that given in Eq. (3) or
its incompressible counterpart. In both cases
an explicit tensor representation for b is ob-
tained in terms of tensor functions of S and
W ; however, substantial differences exist that
find their origin precisely in the way the ex-
pansion coefficients are obtained. In light of
this rather broad approach to coefficient cali-
bration, which can be taken in developing any
particular NLEVM, it is not possible to detail
these models here. The interested reader is re-
ferred to Gatski and Jongen (2000) and Gatski
and Rumsey (2001) for details as well as addi-
tional references.

For the development of EASMs, a formalism
has been developed that, when rigorously ap-
plied to the second-moment transport equation
given in Eq. (3), yields an explicit tensor rep-
resentation for the Reynolds stress anisotropy
tensor with closure coefficients directly ex-
tracted from the full differential form. A linear
relation of the form,

N
b=>"a,T", (7)
n=1

can then be obtained between the tensor b and
a finite number N of other tensors T(), T(2) ...,
T(N) that are formed from elements of S and
W. Scalar coefficients in this linear relation are
invariants of the independent tensors and of b.
Since b is required to be an isotropic function



of S and W, the form of Eq. (7) must also be
unaltered by simultaneous orthogonal transfor-
mations of the matrices b, S and W. Thus,
it is possible to obtain an expression for the
expansion coefficients that are independent of
the coordinate system used, and are algebraic
functions of invariants formed with b and the
basis tensors. A simple way to obtain this ex-
pression is to form the trace of the N matrix
equations (Gatski and Jongen 2000) from Eq.

(7,

ZNj an{TMTM} = {bTM},  (8)

n=1

where m = 1, 2, ...,N. These N scalar equations
in the coefficients «,, may be solved to obtain
the desired expressions for «, as functions of
the invariants.

This same approach can be generalized to
the implicit algebraic equation given by the
right-hand-side of Eq. (3). This implicit equa-
tion is the usual starting point for development
of EASMs, and under the formalism just de-
scribed each term in the equation can be pro-
jected onto the function space spanned by the
tensors TN) to yield an optimal representation
for b.

Even though the EASMs are now being used
in many applications with generally good suc-
cess, it is important to recognize the inherent
deficiencies in the formulation. First is the
weak equilibrium assumption (Db;;/Dt = 0)
and second is the assumed form of the tur-
bulent transport and viscous diffusion model.
This means that effects such as relaxation of
the individual stress components are not in-
cluded, and turbulent transport is not fully ac-
counted for in the formulation, however, these
deficiencies can be addressed in a rigorous
manner in the EASM formulation. For exam-
ple, the weak equilibrium assumption can be
shown to be related to the frame-invariance
properties of the algebraic constitutive equa-
tion. As such, modifications can be introduced
that yield an algebraic stress model retaining
the same invariance properties as the full differ-
ential stress model (Gatski and Jongen 2000).

The EASM level of closure remedies some
deficiencies inherent in the two-equation level
of closure (as well as other linear eddy viscos-
ity models). The most obvious deficiency is
the isotropic eddy viscosity assumption that
is a consequence of the Boussinesq approxi-
mation of assuming a direct proportionality
between 7 and S. Another deficiency is that
the models are materially-frame indifferent, a

consequence of the models’ sole dependence
on the objective strain rate tensor S through
the Boussinesq assumption. This is in con-
trast with the EASMs (and RSMs), which are
not frame-indifferent, since they also display
a functional dependency on the non-objective
rotation rate tensor W. It can be shown that
turbulent closure models do not have to be
materially frame-indifferent even though the
Reynolds stress tensor is (Speziale 1998). This
deficiency means there is an insensitivity to
non-inertial (as well as curvature) effects.

MODELING CHALLENGES

The transport equation for the compress-
ible, Reynolds stress anisotropy tensor in Eq.
(3) shows the set of higher-order correlations
that require closure. Since formal development
of explicit algebraic stress models simply uses
unaltered closure models for these higher-order
correlations, it is only necessary to assess the
various terms which appear in (3).

As alluded to previously, the deviatoric part
of the pressure-strain rate correlation Hfj is
commonly treated in the same way for both
incompressible and compressible flows. High-
Reynolds number models for this correlation
(Launder et al. 1975, Speziale et al. 1991)
have been under development for over twenty-
five years and have probably reached a point
of maturity where further improvements will
be difficult to justify in thin shear flows or
predominantly two-dimensional flows. In addi-
tion, databases of sufficient accuracy or com-
pleteness for fully three-dimensional flows are
difficult to find, yet necessary in order to es-
tablish the reliability of current models in more
complex flows.

Other unknown correlations that appear in
Eq. (3) are not as well established (even for
their high-Reynolds number forms) as Hfj and
should be considered further.

Compressibility effects

Compressible formulations rely mainly on
variable mean density extensions of incom-
pressible models and to a lesser extent on the
modeling of terms which appear solely in the
compressible transport equations. Even with
variable mean density extensions, care must be
taken or log-layer balances can be adversely af-
fected (Huang et al. 1994).

There appears to be no “complete” com-
pressible model where all terms that represent
the compressibility effects have been included.



Nevertheless, models do exist, but have not
been evaluated in total. Brief comments fol-
low on each of these terms.

Heat and mass flux. The heat flux term
plays a prominent role in the mean (total)
energy equation, and also affects the pressure-
velocity correlation p/u). Gradient-diffusion
models have been the most popular and sim-
plest closures for turbulent heat fluxes, al-
though more recent attempts take into account
variable Prandtl number effects. These require
solution of transport equations for the temper-
ature variance and dissipation of temperature
variance. Both algebraic and differential scalar
flux models have been proposed but, for the
most part, their calibration has not been based
on compressible flows.

The average fluctuating velocity ;I,? is re-

lated to the mass flux p’u! through
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This term is important to flow dynamics in the
vicinity of shocks and in reacting flows. Many
of the models for this term were developed
about a decade ago (e.g. Rubesin 1990) and
have only received limited attention (Huang et
al. 1995).

The level of sophistication in each of these
closures varies and new approaches may be
necessary. While a modeled, full differential
form is an alternative, such an approach would
certainly over-burden any general purpose nu-
merical solver. One attractive alternative is
to use the representation theory discussed in
the previous section. While the discussion here
focuses on tensor representations, vector repre-
sentations of the heat and mass fluxes may be
a way to further enhance current models. The
current form of such scalar flux closures lies
more in the category of nonlinear eddy diffu-
sivity models since they have a proper func-
tional behavior, but the expansion coefficients
are determined from imposed physical consis-
tency constraints.

(9)

Dilatation terms. Both the dilatation dissi-
pation and the pressure-dilatation models cur-
rently available originated about a decade ago
(Zeman 1990 and 1993, Sarkar et al. 1991,
Sarkar 1992, see also Wilcox 1998). Dilatation
dissipation and the pressure-dilatation were
modeled and calibrated based on early DNS
results of homogeneous flows. They were also

applied to inhomogeneous flows, such as mix-
ing layers (dilatation dissipation) and bound-
ary layers (pressure-dilatation). In a com-
pressible mixing-layer, the dilatation dissipa-
tion can have a significantly favorable effect
on the spreading rate; whereas, in a flat-plate
boundary-layer, the log-law can be adversely
affected (Zeman 1993).

These early models attempted to account for
the experimental observation that a decrease
of turbulent fluctuations corresponded with an
increase in turbulent Mach number, and led to
the conclusion that turbulent anisotropies had
a relatively constant behavior over a convec-
tive Mach number range. Dilatational dissi-
pation models were able to account for turbu-
lence reduction and brought calculations into
agreement with experiments. Thus, the results
strongly suggested that an increase in the com-
pressible dissipation and the resultant decrease
in turbulence were the dynamic reasons for the
reduction in spreading rate. Recent DNS stud-
ies (e.g. Pantano and Sarkar 1999), however,
have shown that differences in the level and
distribution of pressure fluctuations are cen-
tral to the reduction in turbulence. This means
that the previous rational for modeling dilata-
tional dissipation was not justified even though
it yielded the correct observed spreading rate
behavior for the mixing layer.

At present, the correct modeling approach
to dilatational terms remains an open question.
This provides an opportunity for reassessment
and consideration of alternative forms for such
models.

Scale equation

Associated with the closure of the second-
moment transport equation described by Eq.
(3) is the need to find a model for the tur-
bulent, tensor dissipation rate. The high-
Reynolds number form of such models as-
sumes isotropy and generally involves a trans-
port equation for the solenoidal part. The
most popular alternative to the dissipation rate
is the specific dissipation rate w (see Wilcox
1998).

One deficiency of single-point closures is
that the models used for higher-order corre-
lations (high-Re form) are characterized by a
single time scale (say K/e). Various unknown
correlations that appear in the turbulent trans-
port equation (3) represent turbulent inter-
actions associated with different parts of the
turbulent spectrum. For this reason multiple-
time scale modeling was introduced over two



decades ago (see Schiestel 1987). Such con-
cepts have not been able to replace the usual
single-scale modeling to date; although, with
the ever-increasing availability of direct simula-
tion, interest in this approach is being renewed.

Rigorous modeling of a tensor dissipation
rate transport equation has long been re-
stricted by lack of detailed data; however, more
details about the balance of terms in the “ex-
act” transport equation for £ have emerged
from direct simulations of (simple) inhomoge-
neous flows. This information has not been ex-
tensively used in developing a revamped model
of either the tensor dissipation rate or isotropic
dissipation rate equation. The recent attempts
at deriving such transport equations, and uti-
lizing some simulation databases, have been
from either an approach analogous to the de-
velopment of Reynolds stress model (Speziale
and Gatski 1997) or development of a length
scale equation extracted from a two-point cor-
relation tensor equation (Oberlack 1997).

Wall proximity effects

Complex wall-bounded turbulent flows rep-
resent a large portion of the application ar-
eas of current interest. Unfortunately, as the
complexity of the flow field increases and the
corresponding need for higher-order closures
increases, the robustness and efficiency of solu-
tion procedure decreases. Presence of the wall
and a corresponding decrease in local Reynolds
number implies that additional characteristic
turbulent scales need to be introduced into the
modeling process. This has been most com-
monly done in the dissipation rate (or scale)
equation through the introduction of damp-
ing functions, which effectively switch between
high-Reynolds number turbulent scales such
as those characterized by K and ¢ alone, and
the Kolmogorov scales. Higher-order closures
such as Reynolds stress models impose the
additional constraint that individual compo-
nents of the Reynolds stress tensor need to be
“damped” in a manner consistent with both
the turbulent kinetic energy and dissipation
rate equations.

Recent approaches focus on incorporating
dynamic characteristics into near-wall closure
schemes in order to minimize or eliminate any
dependence on geometry dependent parame-
ters. Examples of the incorporated characteris-
tics are the two-component limiting behavior of
the turbulent stress anisotropy and normalized
length-scale gradients (e.g. Craft et al. 1998).
Still other approaches have introduced an el-

liptic relaxation of components of a velocity-
pressure gradient correlation and tensor dis-
sipation rate. This relaxation approach was
proposed almost a decade ago (Durbin 1993)
for a Reynolds stress model, but has been suc-
cessfully applied by a number of authors in a
subset two-equation v2 — f formulation.

Other complicating factors, such as ani-
sotropies in the (solenoidal) dissipation rate,
arise as walls are approached. Clearly, several
effects arise in proximity to walls, but up to
this point an overall consistent approach to de-
veloping a near-wall model has not been fully
achieved.

In order to highlight this point, consider the
turbulent transport term. Direct simulation
results have shown that this term is important
in the near-wall region. Several models have
been proposed over the last three decades. In
the following subsection, an analysis of various
models within a common framework will show
that while the models differ in detail, they be-
long to the same general level of closure, and
as such should not be expected to give signifi-
cantly different results.

Turbulent transport. Turbulent transport
plays a pivotal role outside regions dominated
by either production or redistribution effects.
It can be an important contributor to turbu-
lence dynamics in close proximity to walls, near
the centerline of free-shear flows, and outer
edges of such flows. The focus is on the triple-
velocity correlation term. With incompressible
flows, the pressure-velocity correlation term is
either neglected or assumed modeled with the
triple-correlation. In compressible flows, the
pressure-velocity correlation is given by

Ul = Rpu!!T" + RTp'ul. (10)

where T is the Favre-averaged mean tempera-
ture and R is the gas constant. Thus, both heat
flux and mass flux models need to be developed
that are calibrated in a manner consistent with
observed behavior in both the individual terms
and the pressure-velocity correlation.

In regions of weak shear, spatial gradients of
the time—averaged triple velocity product rep-
resent the rate at which Reynolds stresses are
transported by turbulent fluctuations. Con-
ventional models of these correlations have
been formulated with this physical role in
mind, and have been confined to gradient
transport forms (proportional to the spatial
gradients of the Reynolds stresses) with vary-
ing degrees of complexity. It has not been



possible to calibrate these alternatives over a
range of flows — even in the incompressible case.
For the purpose of this discussion, a variable
density extension of an incompressible triple-
velocity correlation model will be considered,
that is,

PN .
PU; U U = P Tk, (11)

where T;;i for the compressible case is a Favre-
averaged triple-velocity correlation.

Several models have been proposed over the
last thirty years; however, none yield signif-
icantly improved predictions. This suggests
that a more rational model needs to be devel-
oped for the triple-velocity correlation.

One way to proceed is to use tensor repre-
sentation theory to construct a suitable tensor
polynomial expansion consistent with the func-
tional relation,

ﬁjk = 7;]]9 (Tlm, g, Almn7 Smn) W’mn) (12)

where Ajpmpn = 071 /0.

Equation (12) is the most general algebraic
representation for the symmetric third—-order
tensor 7;;k in terms of both second— and third-
order tensors. Such a representation was devel-
oped by G. F. Smith (see Younis et al. 2000)
and can be divided into four groups.

Group I: Terms that are linear in 75 (3
linearly independent terms)

Group II: Terms that are bilinear in 7;; ; and
7;; (11 linearly independent terms)

Group III: Terms that are bilinear in 7k
and S;; (11 linearly independent terms)

Group IV: Terms that are bilinear in 7;;
and W;; (5 linearly independent terms)

These thirty terms produce a general represen-
tation of the form

30
Tik= 3 cn®) (13)
n=1

where (1)5712 (n=1,...,30) are third-order sym-

metric tensor-valued isotropic functions, and
the ¢, scalar expansion coefficients can (in gen-
eral) be functions of invariants formed from the
independent tensors of 7.

As noted, the literature contains a diverse
assortment of closure models for the triple-
velocity correlation. It can be shown (Younis
et al. 2000), however, that these fall into two
categories that are either linear or bilinear in
the tensor dependencies given by

OTim
7;:jk = 7_l~jjk (Tlm,g, ‘a%n) . (14)

Table I summarizes some of the models pro-
posed and the corresponding basis terms in-
volved. It is clear from the table that the most
of these models are bilinear in the Reynolds
stresses and their gradients, and that no mod-
els contain the dependence on mean velocity
gradients required by the exact equation. It
is not surprising, therefore, that there is lit-
tle real difference in their performance across a
wide range of benchmark turbulent shear flows
(Cormack et al. 1978).

Clearly, it is by no means a simple matter to
develop a rational model for the triple-velocity
correlation. A complicating factor is that one
would suspect the dynamics described by the
transport equation for triple-moments would
differ between a wall-bounded flow and a free-
shear flow. Nevertheless, with demands on
accuracy increasing, the inability to accurately
predict such behavior will become a liability.

FUTURE STRATEGIES

One might expect that the current modeling
challenges just outlined will not disappear from
the modeling arena in the near future. More
complex flow fields, which may include effects
such as heat transfer or buoyancy, will chal-
lenge the existing forms and require even more
accurate models. As computational resources
increase, inevitably that there will be more em-
phasis placed on direct computation of some
flow field regions, and in some cases on entire
flow fields themselves. Nevertheless, as empha-
sized at the outset, it will not be possible to
handle direct flow field computations of prac-
tical geometries for many decades. Compos-
ite approaches that utilize aspects of suitably
averaged and filtered transport equations for
higher-order turbulent correlations will surely
be required.

Composite approaches of this type are now
being formulated, for example, under head-
ings such as Detached Eddy Simulation (DES)
(Spalart 1999) and Flow Simulation Methodol-
ogy (FSM) (Zhang et al. 2000). In the former
approach, the one-equation Spalart-Allmaras
turbulence model is altered to account for
subgrid-scale effects through a modification of
the destruction term. In the latter approach,
a defined turbulent stress tensor is delimited
between zero (implies DNS) and the Reynolds
stress tensor pr;;.

In the RANS limit of such approaches, those
used have been closure models developed and
calibrated for equilibrium conditions of ho-
mogeneous flows, equilibrium regions of inho-



Table 1: Summary of 7;;; models and corresponding tensor bases

Model
Basis Hanjalic & Launder Mellor & Herring Lumley Cormack et al. Magnaudet
Tensor (1972) (1973) (1978) (1978) (1993)
> Ak 0.073 0.069
> Aippjk —0.136
> Appibik —0.632
> AippTik 0.102 0.16
> AppiTik —0.068
> AijpTpk 0.11 0.098 0.125
> AipgTpabik 0.013
> AppaTqidik 0.192

mogeneous flows, or modeling of statistically
steady flows. The adaptation of these models
outside the RANS limit has not inherently al-
tered their functional form, but simply blended
this RANS behavior in smooth fashion to ei-
ther a new subgrid scale model (DES), or
a direct simulation (FSM). In general, non-
equilibrium effects should be the norm in such
evolving flow fields, and as such, new mod-
els for some already established higher-order
correlations will be needed. This is especially
true if the hierarchy of closure models estab-
lished for the RANS approach is carried over
to these new composite approaches. Another
effect that can have a significant impact on
these new models is the single-scale concept
currently used. This point was addressed in a
previous section and is further amplified in the
context of composite schemes due to increased
importance of a broader range of turbulent
scales. Such questions of functional compati-
bility should and will be addressed as the vari-
ety of flows studied increases, and as demands
on performance increase.

CONCLUDING REMARKS

Contrary to some of the more pessimistic
forecasts about turbulence modeling and its
viability for predicting turbulent flows, there
exists a wide variety of uses and challenging
problems that can be successfully solved us-
ing RANS-type closures. However, based on
recent trends, as the maturity level and prac-
tical needs of the prediction increase, demands
on the performance levels of the models will
also increase.

In response to these performance demands,
hopefully there will not be a surge of new
models that simply reshuffle existing formu-
lations. Specific correlation models (some of
which have been outlined here) that possess the

correct functional dependencies and can be cal-
ibrated unambiguously are needed. Uniquely
identifying deficiencies in individual correla-
tion closure models is difficult, especially in
complex flow fields. Some of these difficulties
may be due to issues associated with the nu-
merical modeling of the physical flow problem
rather than modeling of the higher-order tur-
bulence correlations.

While the current challenges outlined fo-
cused primarily on traditional RANS solu-
tion approaches, it will become increasingly
important to formulate enhanced composite
approaches that can be easily merged into
more direct simulations of turbulent flows. In
both cases, these challenges should be viewed
as wide ranging opportunities for turbulence
model developers and users.

REFERENCES

Bardina, J. E., Huang, P. G., and Coakley,
T. J., 1997, “Turbulence modeling validation,
testing, and development,” NASA Technical
Memorandum 110446.

Cambon, C., and Scott, J. F., 1999, “Linear
and Nonlinear Models of Anisotropic Turbu-
lence,” Annu. Rev. Fluid Mech., Vol. 31, pp.
1-53.

Casey, M., and Wintergerste, T. (eds.),
2000, Best Practices Guidelines, Version 1.0
European Research Community on Flow, Tur-
bulence and Combustion (ERCOFTAC).

Cormack, D. E., Leal, L. G., and Seinfeld,
J. H., 1978, “An evaluation of mean Reynolds
stress turbulence models: the triple velocity
correlation,” Trans. ASME J. Fluid Engrg.
Vol. 100, pp. 47-54.

Craft, T. J., 1998, “Developments in a low-
Reynolds number second-moment closure and
its application to separating and reattaching
flows,” Int. J. Heat and Fluid Flow Vol. 19,



pp. 541-548.

Durbin, P. A., 1993, “A Reynolds stress
model for near-wall turbulence,” J. Fluid Mech.
Vol. 249, pp. 465-498.

Gatski, T. B., and Jongen, T., 2000, “Non-
linear Eddy Viscosity and Algebraic Stress
Models for Solving Complex Turbulent Flows,”
Progress in Aerospace Sciences, Elsevier Sci-
ence Publishers, Vol. 36, pp. 655-682.

Gatski, T. B., and Rumsey, C. L., 2001,
“Linear and Nonlinear Eddy Viscosity Mod-
els,” Closure Strategies for Modelling Turbu-
lent and Transitional Flows (eds. B. E. Laun-
der and N. D. Sandham), Cambridge Univer-
sity Press, Cambridge.

Hanjalic, K., and Launder, B. E., 1972, “A
Reynolds stress model of turbulence and its ap-
plication to thin shear flows,” J. Fluid Mech.
Vol. 52, pp. 609-638.

Huang, P. G., Bradshaw, P., and Coakley,
T. J., 1994, “Turbulence models for compress-
ible boundary layers,” AIAA J. Vol. 32, pp.
735-740.

Huang, P. G., Coleman, G. N., and Brad-
shaw, P., 1995, “Compressible turbulent chan-
nel flows: DNS results and modelling,” J. Fluid
Mech. Vol. 305, pp. 185-218.

Kassinos, S. C., and Reynolds, W. C., 1997,
“Advances in structure-based turbulence mod-
eling,” Annual Research Briefs Center for Tur-
bulence Research, NASA Ames/Stanford Uni-
versity, pp. 179-193.

Launder, B. E., Reece, G. J., and Rodi,
W., 1975, “Progress in the development of a
Reynolds-stress turbulence closure,” J. Fluid
Mech. Vol. 68, pp. 537-566.

Lumley, J. L., 1978, “Computational model-
ing of turbulent flows,” In Advances in Applied
Mechanics. (ed. C-S. Yih), New York: Aca-
demic Press, Vol. 18, pp. 123-176.

Magnaudet, J., 1993, “Modelling of inho-
mogeneous turbulence in the absence of mean
velocity gradients,” Appl. Sci. Res. Vol. 51,
pp. 525-531.

Mellor, G. L., and Herring, H. J., 1973, “A
survey of the mean turbulent field closure mod-
els,” AIAA J. Vol. 11, pp. 590-599.

Oberlack, M., 1997, “Non-isotropic dissipa-
tion in non-homogeneous turbulence,” J. Fluid
Mech. Vol. 350, pp. 351-374.

Pantano, C., and Sarkar, S., 2001, “A study
of compressibility effects in the high-speed tur-
bulent shear layer using direct simulation,” J.
Fluid Mech. Submitted.

Pope, S. B., 1975, “A more general effective-
viscosity hypothesis,” J. Fluid Mech. Vol. 72,

pp. 331-340.

Rubesin, M. W., 1990, “Extra compress-
ibility terms for Favre-averaged two-equation
models of inhomogeneous turbulent flows,”
NASA CR 177556.

Sarkar, S., 1992, “The pressure-dilatation
correlation in compressible flows,” Phys. Flu-
tds A Vol. 4, pp. 2674-2682.

Sarkar, S., Erlebacher, G., Hussaini, M. Y.,
and Kreiss, H. O., 1991, “The analysis and
modelling of dilatational terms in compressible
turbulence,” J. Fluid Mech. Vol. 227, pp. 473—
493.

Schiestel, R., 1987, “Multiple-time-scale
modeling of turbulent flows in one point clo-
sures,” Phys. Fluids Vol. 30, pp. 722-731.

Spalart, P. R., 1999 “Strategies for turbu-
lence modelling and simulations,” In Engineer-
ing Turbulence Modelling and FEzperiments /
(eds. W. Rodi and D. Laurence), Elsevier, pp.
3-17.

Speziale, C. G., 1998, “A review of material
frame-indifference in mechanics,” Appl. Mech.
Rev. Vol. 51, pp. 489-504.

Speziale, C. G., and Gatski, T. B., 1997,
“Analysis and modeling of anisotropies in the
dissipation rate of turbulence,” J. Fluid Mech.
Vol. 344, pp. 155-180.

Speziale, C. G., Sarkar, S., and Gatski, T.
B., 1991, “Modelling the pressure-strain cor-
relation of turbulence: an invariant dynamical
systems approach,” J. Fluid Mech. Vol. 227,
pp. 245-272.

Wilcox, D. C., 1998, Turbulence Modeling
for CFD, Second Edition, DCW Industries,
Inc., La Canada, California.

Younis, B. A., Gatski, T. B., and Speziale,
C. G., 2000. “Towards a rational model for
the triple velocity correlations of turbulence,”
Proc. R. Soc. Lond. A, Vol. 456, pp. 909-920.

Zeman, O., 1990, “Dilatation dissipation:
the concept and application in modeling com-
pressible mixing layers,” Phys. Fluids A Vol.
2, pp. 178-188.

Zeman, O., 1993, “A new model for super/-
hypersonic turbulent boundary layers,” AIAA
31th Aerospace Sciences Meeting, Paper No.
93-0897.

Zhang, H. L., Bachman, C. R., and Fasel, H.
F., 2000 “Application of a new methodology
for simulations of complex turbulent flows,”
Fluids 2000, ATIAA Paper No. 2000-2535.

10





