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ABSTRACT

Secondary, wavy, instabilities of velocity
streaks are studied in a plane channel flow.
As opposed to previous studies, a random sig-
nal was used to force the secondary insta-
bility (at a fixed streamwise position). Mo-
mentary, the random signal exhibits specific
frequencies. Eventually the frequency will
be amplified by the streak, forming a (lo-
calized) growing secondary instability with a
length of a few wavelengths. Earlier work,
theoretical, numerical and experimental alike,
have studied the streamwise growth of infi-
nite long harmonic oscillations. If amplified
by the streak, the short localized secondary
disturbances might ultimately develop into a
turbulent spot. Phase-averaged hot-wire mea-
surements, together with proper evaluation of
the data, gives information of the disturbances.
The amplitude of the localized disturbances
grow exponentially. It is indicated that the
growth rate of the disturbance decreases as the
length of the disturbance decreases. It is also
seen that the propagation speed of the distur-
bances are close to the local velocity at the
position where the maximum disturbance en-

ergy appear.

INTRODUCTION

It is known from flow visualizations and
measurements that, assumed the disturbance
amplitude of the environment is high, laminar-
turbulent transition might be preceded by the
formation and growth of streamwise streaks
with alternating high and low velocity (Kendall
(1998) , Matsubara & Alfredsson (2001)). The
growth mechanism for those streaks is so called
transient growth (Ellingsen & Palm (1973),
Landahl (1980), Butler & Farrell (1992), An-
dersson et al. (1999), Luchini (2000)). Further
downstream, breakdown occurs due to wave-
like secondary instabilities of the streaks. For a
Blasius boundary layer, this transition scenario
is dominant for free-stream turbulence levels
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Figure 1: Experimental set-up.

ranging from about 1% to 7%. With lower
disturbance levels, TS-waves interact with the
streaks giving a more complex transition sce-
nario; with higher disturbance levels turbulent
spots can be produced directly by disturbances
injected locally in the boundary layer by the
free-stream turbulence.

Secondary instabilities of velocity streaks,
modeling the instabilities of streaks appearing
in free-stream turbulence induced transition,
have been studied experimentally by e.g Elofs-
son et al. (1999) and Asai et al. (1999). Recent
theoretical work has been performed by Ander-
sson et al. (2001). In general, a velocity streak
in a shear flow can be either stable, subject to a
growing symmetric disturbance due to the in-
flectional normal velocity profile or subject to
a growing anti-symmetric disturbance appear-
ing due to the inflectional spanwise velocity
profile. Flow visualization pictures and theory
indicate that the secondary instability ampli-
fied by streaks in a laminar boundary layer
are anti-symmetric, consequently driven by the
spanwise inflection point.

All experiments and theory cited above have
investigated infinite long, continuous wave
trains. In the present work, a random forc-
ing, simulating a turbulent free-stream forc-
ing streaks in a laminar boundary layer, have
been used. The downstream development of
the thus occurring, localized secondary distur-



2 OfC_CCIDIoIIIIIIIIIooooIIiiiiIIIiIEA

===S=S=Z= SRR S o Pl Tt gl S

90 100 110 120 130 140 150 160 170 180
x

Figure 2: Mean flow variation in the zz-plane at y = 0.36.
Contour levels are 10% of the centreline velocity, Ucr, and
negative contours are dashed. The thick solid lines shows
the area showed in figures 5 & 6.

bances have been studied. In a real boundary
layer undergoing transition, flow visualizations
show that the secondary instabilities occurring
naturally indeed have a length of a few wave-
lengths only.

The process sketched above, growth of
streamwise streaks followed by the amplifi-
cation of secondary instabilities and finally
breakdown, is also believed to be the process
behind the growth and bursting of streaks in
turbulent, wall bounded shear flows.

EXPERIMENTAL SET-UP

The set-up shown in figure 1 was used. The
flow apparatus is a plane channel, consisting
of two.glass plates separated by 8.2 mm thick
aluminium bars. The air is blown through the
channel by a centrifugal fan and before the
channel, the air passes a silencer, a stagnation
chamber with two turbulence damping screens
and finally a plane contraction before enter-
ing the channel region. The aspect ratio of the
channel is 1:100 and the first instrumental plug
is positioned 95 channel heights downstream of
the channel inlet.

A single hot-wire can be traversed to any
point in the flowfield. The hot wire measures
the streamwise velocity component.

In the channel, five laminar streamwise ve-
locity streaks are generated by applying suc-
tion through streamwise slots at one of the
channel walls. At first, the streaks grow
rapidly and reaches a maximum amplitude,
whereupon they decay slowly downstream.
The spanwise wavelength of the streaks were
15 mm.

The coordinates are z, y and z for the
streamwise, wall-normal and spanwise direc-
tion, respectively. All lengths are normalized
with the half-channel height h and the origin
is positioned at the centre of the channel. The
spanwise position of the origin is at the centre
of a low velocity streak; the streamwise posi-
tion of the origin is at the position of streak

Figure 3: Mean flow variation in the upper half of the chan-
nel at z = 112 (top) and z = 161 (bottom). Contour lines
are 10% of Ugy. As in figure 2, the thick solid lines show
the area studied in figures 5 & 6.

generation.

In figure 2 the streaks are shown in the zz2-
plane at y = 0.36, i.e. approximately one third
towards the upper wall from the centre of the
channel. Once established, the secondary dis-
turbances have their maximum amplitude at
this height. The contours show the velocity af-
ter subtraction of the spanwise mean at each
z. As seen in the figure, the streaks are fairly
independent of z. The peak-to-peak amplitude
is approximately 55% of the centreline velocity.

The yz-distribution of the streaks at z =
112 and 161 are shown in figure 3. Note that
y = 0 and 1 corresponds to the centre and up-
per wall of the channel, respectively, i.e. only
the upper half of the channel is shown. To be
able to show the velocity distribution up to the
wall at y = 1, the velocity was interpolated to
zero at the wall. The measurements extend to
y = 0.75.

The disturbance generation of the present
experiment is inspired by the experiment of
Shaikh (1997), who generated turbulent spots
in a boundary layer using random, but re-
peatable suction/blowing through a hole in the
plate. The streaks io the channel are suscep-
tible of a secondary instability, which in the
present work was forced by blowing/suction
through spanwise slots driven by speakers con-
nected to the slots by PVC-tubes. The stream-
wise position of the slots is £ = 50. The
speakers were driven by random but repeat-
able noise in a suitable frequency band. Two
speakers, driven with the original and inverted
signal, respectively, were used. By connect-
ing tubes from the two speakers to different
slots, symmetric and anti-symmetric modes
of the secondary instability could be forced.
In the present set-up, anti-symmetric distur-
bances are much stronger amplified than sym-
metric ones.

The centreline velocity Uey, is used for ve-
locity normalization. During the reported
measurements, the centreline velocity was con-
stant within +1.5% and equal to 13.5 m/s,
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Figure 4: Phase averaged velocity signal from y = 0.36, z =
—0.49. Top figure shows the full sequence and the following

figures zoom in on the period marked with crosses in the
figure above.
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Figure 5: The 30 realizations averaged for the last trace in
figure 4.

giving a Reynolds number defined as Re =
Ucrh/v of 3700. The critical Reynolds number
is 5772, so all single-mode disturbances were
damped in the channel.

Measurements were performed at 9 stream-
wise, 7 vertical and 31 spanwise positions. The
secondary instability forcing was driven with a
1 s long, predetermined random sequence, digi-
tally bandpass filtered between 100 and 500 Hz
(the most amplified frequency was around 260
Hz). At each position, the sequence was run 20
times, allowing phase averaging in order to in-
vestigate repeated and intermittent features of
the generated disturbance. The amplitude of
the secondary instability forcing was chosen so
that a few (3-7) turbulent spots appeared at
the most downstream measurement positions
during one realization of the disturbance se-
quence. In the present paper, repeated features
of the disturbances are reported.

The velocity U is decomposed into a mean
part, as shown in figures 2 & 3, and a fluc-
tuating part, denoted u, including the time
dependent secondary instability together with
momentary changes of the velocity distribution
due to turbulent spots.
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Figure 6: Phase averaged disturbance velocity u at z = 161,
y = 0.36. Contour levels are 0.3% and 1% of Ucy, in (a) and
(b), respectively. Negative contours are dashed.

RESULTS AND DISCUSSION

An example disturbance

A phase-averaged velocity signal from
(z,y, 2) = (112,0.36,—0.49) is shown in figure
4. From the top and down, the signal is zoomed
in on a single, localized secondary disturbance,
occurring where it does since the secondary in-
stability forcing had a momentary high energy
content around an amplified frequency.

In the top trace of figure 4, quite a few
strong oscillations of the velocity are seen, es-
pecially around ¢ = 300 ms and ¢t = 750 ms.
Zooming in around ¢ = 300 ms, to the second
trace from the top in the figure, the oscilla-
tions are seen in more detail. For the eye,
the strong oscillations seem to be of constant
frequency (later, more detailed studies of the
phase-averaged velocity will show that the fre-
quency varies approximately £20% for the dif-
ferent identified disturbances). The trace also
shows that the higher amplitude oscillations
are of various lengths; some consists of one
or two periods only, whereas other can persist
for seven oscillations or more. The third and
fourth trace in figure 4 continues the zooming,
finally showing a single, isolated disturbance at
the bottom.

In figure 5, the 30 individual realizations av-
eraged in figure 4 are shown. The zero-level of
the traces are seen to vary slightly (approxi-
mately £0.7% of Ucr) around the mean value.
The oscillation is due to the large values of
Ou/0y and Ou/dy at the position of the hot
wire. Apart from this oscillation, small but
distinct variations in phase, amplitude and fre-
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Figure 7: Time trace of u,ms a¢ defined by equation (1).
The centre of the disturbance studied in figures 5, 6 & 9 is
marked with a cross.

quency are present.

The velocity distribution measured by the
hot wire as the disturbance passes is shown in
figure 6. The disturbance is shown as contours
of streamwise velocity in a zt-plane, showing
the bottom trace of figure 4 together with the
traces from other spanwise positions. The five
periods seen in the bottom trace of figure 4
are clearly seen as six positive peaks follow-
ing a line of constant y = 0.49. The spanwise
extent shown in figures 6 are shown with the
solid lines in figures 2 and 3. Note that the
time of occurrence is later in figure 6 (b), since
the disturbance reaches the downstream posi-
tion later than the upstream position shown in
figure 6 (a). The contour levels are three times
larger in figure 6 (a) as compared to (b), due
to the streamwise growth of the disturbance.
Comparing the two distributions in detail, the
downstream distribution is more centralized
around the maximum peak whereas the ampli-
tude is high for a longer period at the upstream
position in (a). The individual peaks are also
seen to move towards z = 0 as they propagate
downstream.

Disturbance properties

In order to study the amplitude develop-
ment of disturbances such as the one shown
above, a local measure of the velocity oscilla-
tions was defined as:

Urms,At (ta :L‘) =

ft-l—At/2
t—At/2

w2t 7,9, 2)dt. (1)
In the present study, an integrating period At
of 16 ms was used. This was the shortest
period giving a U,ms A¢(t, ) with a single, well-
defined, peak for each localized disturbances.
The temporal development of uyms A+ at =
(top) and 161 (bottom) are shown in figure
7. The disturbance introduced in figures 4—
6 occurs at ¢t ~ 320 ms and is marked with

1
maXy,z 1/ At
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Figure 8: The wavelet transform of the second signal from
the top in figure 4. Black is the minimum value whereas
white is maximum. The cross marks the time of maximum
Urms,At and the frequency at which the energy is maximum
of the disturbance studied in figure 5, 6 & 9.

a cross. In the upper plot, it is seen that
Urms, At €xhibits distinguishable maxima at cer-
tain times. In the plot below, it is seen that
the amplitude of these peaks increase down-
stream, even though the amplification is dif-
ferent from one peak to the other. When com-
paring the two traces in figure 7, the previously
mentioned shift to later times downstream is
clearly seen. However, there is no difficulty
to identify peaks corresponding to the same
disturbance at the two positions. From the cal-
culated urms at(t, ), the time of appearance,
ti(x) of single disturbances can be determined
at different streamwise positions, together with
the corresponding amplitude upms at,i(z).

In order to determine the momentary fre-
quency of the disturbances, wavelet analysis
was used. The wavelet transform of the signal
shown in figure 4 is shown in figure 8. The time
excerpt in figure 8 is the same as in the second
from the top in figure 4. In figure 8, the Morlet
wavelet transform is shown, white indicating
high energy. A peak in the wavelet trans-
form means that the signal oscillates strongly
at the time and with the frequency indicated
by the peak. In the present case, a number of
peaks, corresponding to the disturbance known
from figures 5 & 6 (as usual marked with a
cross) and its neihgbouring disturbances (see
figure 7) are seen. With the time of occur-
rence of a disturbance known from the analysis
of Urms at(t, ), the corresponding frequency is
easily determined as the frequency at which
the wavelet transform exhibits a maximum for
that time.

The duration, 7;, of a disturbance is de-
fined as the time during which urmsa¢(t, z)
stays over a threshold value around the time
at which the disturbance appears. The thresh-
old value was chosen to be 89% of the value
of Urms At at t; (i.e. when the disturbance en-
ergy, u?, had dropped to 80% of its maximum
value). Concluding, the duration 7; of the ith
disturbance appearing at ¢t = ¢; is defined by
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Figure 9: Streamwise development of time of occurrence t;,
frequency maximizing the wavelet energy f;, ¥rms,A¢,; and
T;, defined by equation (2) from the top and down, respec-
tively. The disturbance under study is shown introduced in
figures 4-6.

the maximum 7; for which

u'rms,Atz(t) > O-SUTms,Atz(ti) (2)
where teft;—am, ti+(1-o)n].

The value of the parameter o ranges from 0 to
1, depending on the exact shape of upms at(t)
around t = t;. Now, four properties of the
disturbance have been determined: its time of
occurrence t;(z), amplitude Upmsati(x), fre-
quency fi(z) and duration 7;(x).

The streamwise development of the ampli-
tude and time of occurrence for the example
disturbance are shown in figure 9. From the
time of occurrence, the disturbance is seen to
propagate downstream with constant speed.
The early time at the downstream end of the
channel is due to the development of a turbu-
lent spot, propagating slower than the initial,
oscillating disturbance. From the time of oc-
currence at different streamwise positions, the
propagation velocity u,; of the disturbance is
easily determined.

Figure 9 clearly shows that the amplitude,
Urms,At,; STOWS exponentially, as expected for
a disturbance following linear dynamics. The
slope of the line defines the growth factor,
~. This specific disturbance is seen to grow
slightly more than 10 times passing the test
section.

The momentary frequency and duration for
a specific disturbance did not vary considerably

. at different streamwise positions.

Properties of different disturbances

As was seen in the plot of the localized
disturbance amplitude, u,ms a¢(t), there are
a number of distinguishable disturbances oc-
curring during the measurement period. The
properties defined above (i.e. time of occur-
rence, amplitude, frequency, duration, velocity
and growth) was determined for 13 individual
peaks. The results are shown in figures 10 and
11.
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Figure 10: Streamwise growth factor v of u;ms a¢(t:) as a
function of f; and 7;.
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Figure 11: Streamwise propagation velocity of
maz(Urms,At(t;)) as a function of f; and 7;.
e

In figure 10, the exponential growth factor
of the 13 identified disturbances are plotted as
a function 7;f; (i.e. the number of periods, or
wavelengths, of the disturbance) and the fre-
quency. The disturbance used as example is
marked with a ring, the others with stars.

Studying figure 10 a few features will be
pointed out. The first, and most important,
is that the growth of the disturbance seems to
decrease as the length/duration of the distur-
bance decreases. The second, and less surpris-
ing, is that there exists an optimal frequency,
at which maximum growth is obtained. In
the present case, the frequency yielding maxi-
mum growth is around 260 Hz. For frequencies
higher or lower than the frequency maximiz-
ing the growth, the growth decreases. The
number of disturbances available in the present
database are however far to few to draw any
quantitative conclusions. Nevertheless, the
qualitative trend is clear.

When it comes to the propagation velocity



Up;, shown in figure 11, no clear trends are
seen. The propagation velocity of the max-
ima in urms A¢(t;) is seen to be constant and
roughly 65% of the centre-line velocity, a value
previously obtained by Elofsson et al. studying
a streak triggered by a continuous sinus wave
in the same channel. The value is slightly lower
than the local flow velocity at the y-position of
the maximum of urms at(t, y)-

CONCLUSIONS

Short, localized secondary instabilities of
streaks have been studied. Velocity streaks
were triggered by random, repeatable, noise
by blowing/suction through slits in the upper
channel wall. After phase averaging it was pos-
sible to determine the
(i) time of occurrence
(ii) amplitude
(iii) frequency
(iv) duration
of single disturbances, a few wavelengths long.
It could be concluded that short disturbances
grew slower than long, whereas the propaga-
tions speed was fairly constant. Due to the
few disturbances available in the dataset (13),
no quantitative conclusions could be made.
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