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ABSTRACT

The logarithmic velocity profile is considered in
zero-pressure-gradient turbulent boundary layers on
the rough wall. We have already proposed the new
definition of log-law region with using the
probability profiles of the stream wise velocity
fluctuation for smooth wall. In this report this idea is
extended in case of the rough wall one. The measure
called Kullback-Leibler divergence is applied for
distinguishing the probability profiles, and they are
investigated in the overlap region.

INTRODUCTION

We have considered so far the universal velocity
distribution in zero-pressure-gradient turbulent
boundary layers. Under the invariant assumption of
probability density function (abbreviated as PDF
hereafter), the log-law velocity profile is derived
from the pdf-equation at close to the wall. Our
proposal is that the PDF is resemble each other in
the log-law region (Tsuji, et al., 1999).

One of the recent interesting topics is the mean
velocity distribution in the overlap region in wall-
bounded shear flows (Cipra, 1996). The log-law
velocity profile is believed to be as firmly
established result in turbulence research, however,
some researches cast doubts about its existence
(Barenblatt & Chorin, 1997). At present, we have no
answer to the universal scaling form in the wall
bounded shear flows, but even if the log law is a
good representation of the experimental data, we still
have several questions. Is the slope universal
constant? Additive constant is independent of the
Reynolds number, isn't it? The researchers use the
different values to fit their experimental data. We
assume, these disagreements come from the
indistinct definition of the log-law region. It is not
clear how far the log-law region extends from the
wall. Under the process of deriving the log-law
profile from the PDF equation (Pope, 1986), we
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found that the slope should be constant but the
additive constant depends on the Reynolds number,
which decreases as the Reynolds number increases.
The outer edge of the logarithmic region, &, , is
defined by our invariant assumption of PDF. It is
scaled by the boundary layer thickness &, and the
ratio §/5, is depending on the Reynolds number. All
these results are for smooth wall boundary layers
(Tsuji et al., 1999). The purpose of this paper is to
consider whether the invariant assumption of PDF is
also satisfied in the rough wall boundary layers,
because many experimental works reported that the
log-law profile is firmly existing in them.

EXPERIMENTAL CONDIIONS

In a wind tunnel with a test section 0.32x1.06m’
in area and 2.6 m in length, a typical two-
dimensional turbulent boundary layer is generated.
The data are measured at 1900 mm downstream from
the leading edge with using I and X-type probes, of
which the sensitive region is made of tungsten wire
whose diameter is 3.1 . m and 0.5mm in length.
Also at the seven stations from the leading edge,
velocity fluctuation is measured. The probe is
operated by a constant temperature anemometer, and
the velocity is sampled during 30 sec by 12-bit A/D
converter at 10 kHz. The turbulent boundary layer
developed over the flat working section on which
was attached a sand grain. The height of the
roughness elements is k =1.71 mm and they are
spread all over the bakelite plate as tightly as
possible. The flow condition is set at U,/v=3.16,
5.27,7.38, 9.49, 11.6, 13.71x10°m™', where U is a
free-stream mean velocity and Vv is a kinematic
viscosity. When we consider the unit length, U, /v is
a kind of Reynolds number. The friction velocity is
obtained by the downstream-developing rate of
momentum thickness. The error of origin is
computed by the method presented by Furuya and
Fujita (1976). This is briefly mention in the flowing
section.



RESULTS AND DISCUSSIONS

Experimental results are summarized briefly in the
following, and the relation between the universal
mean velocity profile and the PDF shape is
discussed.

Mean Velocity Distribution

The mean velocity distribution on the rough wall
boundary layers are represented approximately by
the following formula,

U*=A-1n(y+)+B—AU++%w(C)! (1)

where U* =U/u, , y* =u, '(y+17)/v » A=1/x and
¢ =(y+n)/s . While the distance from the top of the
sand grain is y, §is the boundary layer thickness,
and u, is the friction velocity. 5 is the shift in
origin. We believe that x should be constant while
B is slightly depending on the Reynolds number,
which are the same for sooth and rough wall
boundary layers, here « is taken to be 0.41. AU *is
the roughness function, which is zero for the smooth

wall. The parameter IT determines the strength of
the wake function w(¢).

Rewriting the above equation in the velocity-defect
form, that is, subtracting U* from its own value at
the edge of boundary layer, U,, Wwe have the

empirical formula with in the overlap region.

UJ—U*z—A-lnM—E’ @)
s.U;

where §, is the displacement thickness. Hama

recommended using the value of E=0.6 (1954),
while Furuya & Fujita (1967) suggested that £ may
depend on the type of roughness elements. In this
experiment on the sand grained element, E = 0.9 for
1920 < R, <10060 -Equation (2) is expanded as a
function of /s, and then fit the experimental data,
we obtain the shift origin 5 (Furuya&Fujira, 1976).
The momentum thickness divided by the distance
from the leading edge is plotted as a function of
Reynolds number based on the momentum thickness
in Fig. 1. This relation is well approximated by the
linear fit empirically, therefore the local skin friction
is given by the following formula,

c_f=ﬁ=D_R€-0.o‘)z R

2 a
Mean velocity profile is plotted in Fig.2(a) for
several Reynolds numbers. The log-law profile
clearly exists on these rough wall boundary layers.
The slope, 4 =1/« , is almost the same with that of

smooth wall.
As the roughness function AU *is plotted against
the ks it has the slope /x but is a little larger than

the results of sand grained of Furuya & Fujita's

D=8.87x10". 3)

experiments, but it is more closer to the relation by
Hama's values on wire mesh boundary layers.
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Fig.1 Momentum thickness is plotted as a function of
the Reynolds numbers.

The stream wise turbulence intensity, the root
mean square, is expressed as y_, is plotted in Fig.
2(b). Although it is almost constant and decreases
close to the wall, on the smooth wall it increases
gradually near the wall and its peak is located
around y* ~15 . This point differs significantly
from that of smooth wall boundary layers. The log-
law region corresponds to the extent where y, is

convex and gradually decreases outward.
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Fig.2(a) Mean velocity profile on the rough wall
boundary layers on the rough wall.
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Fig.2(b) The turbulence integlsity is normalized by the
friction velocity on the rough wall.

The Reynolds stress normalized by u is also
different from the smooth wall (Fig.2(c)). It is not
zero even at the closest point over the rough wall
and slightly increase outside. On the smooth wall,
however, this value satisfy —(uv>/ur2 ~0.2 in the

log-law region, and it decreases to zero at the wall.
The key point we mentioned in this section is that
the turbulence intensity has a very different profile
for smooth and rough wall boundary layers. On the
other hand, the mean velocity has the same log-law
distribution for these when the appropriate 7; is
adopted on the rough wall one. These are discussed
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in the next section from the point of PDF profile and
the universal scaling.
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Fig.2 (c) Reynolds stress normalized by the stream wise
turbulent intensity on the rough wall.

Invariant Assumption of PDF

The extent of the logarithmic region is classically
considered as an equilibrium region where the total
shear stress is constant. But the ‘‘equilibrium" is
interpreted here as the condition that the PDF profile
of the normalized streamwise velocity component
does not change. That is, the probability profile
remains unique in the log-law region. We call this
idea the invariant assumption of PDF.

When the instantaneous velocity in streamwise
component is decomposed into mean and fluctuation
as # =U +u', we think about the PDF of normalized
velocity; u'/u, , where u, is r.m.s. value of 4'. If the

invariant region of the PDF exist, we regard this as
the log-law region (Tsuji, et al, 1999). In confirming
this assumption, we considered the pdf-equation
approximated near the wall region. The PDF is the
expected value of the Dirac's delta function in this
formula, and it is taken the starting point;

“)

is defined as the fine grained pdf, where » is a
normalized random variable and u, is a sample

variable. And then the PDF is defined as
f@,)=(P(u,))

where ( ) denotes an ensemble average. So the

P(u,)=8W-u,) s u=ulu,,

6))

invariant assumption is,
o w,)/ox=0 > of(u,)/dy=0, (6)

in log-law region. We have derived the log-law
profile from the pdf-equation at close to the wall
subject to Eq. (6). The detailed explanation is
omitted here, but we adopted the following rational
expansion to interpolate the turbulence intensity
distribution in the log-law region.

u, =a+ﬂ1(y+—}/)-l+ﬁ2(y+—}')_2+"' > (D

The coefficient ¢ means @ =u,(y* — +w)and yis

the outer edge of the buffer layer. While the derived
log-law formula has the constant slope, the additive
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constant B depends on Reynolds number. The slope
is given as

A=C-a-p, ®)
where C is the function of Reynolds stress,
C=—(w)/u’. )

We made sure whether Eq. (7) can predict the
experimental data on the smooth wall (Tsuji, et
al.,1999), and the result was very encouraging. In the
logarithmic region Eq. (9) can well interpolate the
turbulence intensity in several Reynolds numbers,
and it was almost constant; C = 0.2 .The coefficients,
a, B,, were scaled as follows,

a=0.324-R)* , B, =8632-R,** . (10)
Therefore, within the experimental accuracy, the
product of ¢ and g, is constant independent of the

Reynolds number, that is, - 8, =28.0. Then by the

Eq. (8), 4 is constant independent of Reynolds
number. About the additive constant B, we are sure
from the theoretical procedure that it depends on the
Reynolds number.

The above mentioned results are all confirmed on
the smooth wall boundary layers. The next step in
this report is to check whether the invariant
assumption is satisfied on the rough wall boundary
layers or not.

First, the streamwise turbulent intensity is
considered. We adopted the rational expansion and
approximated its profile like Eq. (7). Ordinarily on
the smooth wall, 4* has its maximum value around

»y* ~15 and decrease gradually outward. In the wake

region it suddenly goes to zero. Thus, the second
term in Eq. (7) is most significant contribution,
however the third term has small effect, which is
useful to modify the convex profile around the peak
of u'. Although the y*on the rough wall is plotted
in Fig.2(b), it is different from that of the smooth
wall. The peak, or the local maximum point close to
the wall, disappears and then its shape is moderate
convex. The closest measurable point is about
y* =200. This location is beyond the buffer layer

and is contained in the log-law region in case of the
smooth wall. With the wall unit representation, it is
not reasonable to compare the rough wall results
with the smooth wall, but the physics may be
significantly different in the overlap region. The
represented formula Eq. (7) is not coming into effect
on the rough wall.

Second, the Reynolds stress normalized by _,that

is C defined by Eq.(9), is required to be constant for
the invariant assumption. Townsend defined the
structure parameter g, as the ratio of the Reynolds
shear stress to the turbulent Kkinetic energy,
a, (u'v') /[ur’ +v? +Wr2]’ where v, and w,are r.m.s.

value of y' and w', respectively. In the inner



coordinate system, reported g, profiles show a

plateau in the vicinity of their peak values which
moves outwards with increasing Reynolds numbers.
This value is evaluated approximately at g, = 0.13in

the inner region. As the ratio of the fluctuating r.m.s.

values are almost constant, v, Ju, =0.45 and

w, /u, =0.65, then C =g, -(1+0.45% +0.652)= 0.2 is
a reasonable estimation. Exactly, it is a weak

function of the distance from the wall. We
approximated this as

C=C1+£-log(y*/p) , p=109", (1)
where C, =02 and £=0.10on the smooth wall

boundary layers. In the Fig. 2(c), the solid line
represents the Eq. (11). Rough wall has a similar
profile but it moves apart as the Reynolds number
increase.

To sum up the discussions, we required the
empirical formulas Eqgs. (7) and (11) for solving the
pdf-equation under the invariant assumption , Eq.(6),
on the smooth wall. However, the both formulas are
not satisfied in case of the rough wall one. So the
invariant assumption of PDF is not approved, or it
is not an equivalent assumption for the universal
log-law velocity distribution. Therefore, the clear
mean velocity profile shown in Fig. 2(a) on the
rough wall should be comprehend by means of the
new concept of turbulence.

Naturally in experimental data analysis, the

invariant assumption of PDFs must be a little relaxed.

We extract the region where the PDF has a *similar"
profile but not the '‘same " one. The Kullback
Leibler divergence (KLD) (Kullback, 1959) is used
to distinguish the PDF's profile, which is defined as,

D(P|0)=Y P(s)-log(P(s)/Q(s)) »  (12)

{s}
where P(s) and Q(s), {s}=s,,8,,8,, - ,are discrete

probability distributions. KLD has a non-negative
value for any P(s) and Q(s), and it is zero only

when P(s) is the same with O(s)- As KLD has a
smaller value, then P(s) and Q(s) are more similar

with each other. That is, it is a indicator to evaluate
how much probability shape resembles.

In order to see the PDF profile more carefully in
the log-law region, we compare PDFs with Gaussian
distribution. Figure 4 shows the KLD computed at
each position from the wall adopting the velocity
fluctuation probability and the Gaussian profile.
KLD is constant in smooth wall boundary layer
within the log-law region. This is consistent with
that the probability profile resembles each other, or
the invariant assumption is satisfied. On the other
hand, in case of rough wall, it is small in the inner
region and increases at close to the wall. Comparing
with the mean velocity profile in Fig.2(a), within the
log-law region, KLD varies significantly from
0.01to 0.1. Thus the invariant assumption is not
expected on the rough wall.

In the smooth wall boundary layer, the log-law
extent is matching the small KLD region, whose
value is constant. However the rough wall does not
share this character even if there is clear log-law
profile in mean velocity. So the question is why the
small constant KLD region does not exist in the log-
region? We suppose that the mean velocity profile is
significantly modified by the quantity of error of
origin. As we obtained this quantity by the proper
method, the log-law profile is realized. Without
adopting this value, we have no log-law profile. The
error of origin is the collection of mean velocity
profile, but there is no consideration about the
fluctuation quantity.
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Fig.4 Kullback Leibler divergence (KLD) for the smooth
wall (a) and the rough wall (b) boundary layers when
Q(s) is adopted as Gaussian in Eq.(12).

SUMMARY

It has been believed so far that the log-law is the
universal scaling for any wall bounded shear flows.
We though about this problem from the point of
PDF of velocity fluctuations. On the smooth wall,
the invariant assumption of PDF is equivalent to the
log-law distribution, however, this is not approved
on the rough wall. The new universal velocity
profile is expected on the rough wall boundary
layers.
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