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ABSTRACT

The newly developed Subgrid-scale(SGS) eddy
viscosity representation (Tsubokura, 2001) for the
dynamic SGS model (Germano et al., 1991) using
finite difference method (FDM) was further studied
and the related SGS flux model was proposed to
apply the method to a flow with passive scalar
transport and a buoyancy-driven flow. Our main
concern here is to see the dependence of the
proposed models’ results on the discretized filtering
operation. The proposed models were tested in the
plane channel flow with passive scalar transport and
the Rayleigh-Bénard convection. Proposed models
were found to predict better statistics than the
dynamic Smagorinsky’s and contrarily to the
Smagorinsky’s, showed insensitivity to the explicit
test filtering operation in both flows

INTRODUCTION

The validity of the dynamic subgrid-scale (SGS)
eddy viscosity model proposed by Germano et
al.(1991) in Large Eddy Simulation (LES) has been
established in various turbulent flows. But when we
apply finite difference method (FDM) to this
procedure, serious problems arise. One is the
insufficient optimization of the model coefficient.
The typical case of this problem is the
overestimation of the streamwise mean velocity in
simple turbulent plane channel flow (e.g., Cabot and
Moin, 1993). The other problem is that additional
parameter for explicit zest filtering operation must be
determined a priori. The previous report says that
dependence of the results on this explicit filtering is
not small(Tsubokura et al., 1997). Recently
Tsubokura (2001) developed a new eddy viscosity
representation which is suitable for the dynamic
procedure using FDM. He developed the model in
the sense that the consistency of the numerical error

due to FDM between Li and My (see eqs. (14) and
(16)) should be maintained. The proposed model
was tested in the plane channel flow and found to be
less sensitive to the discretized test filtering
parameter as well as predicting better statistics than
Smagorinsky based dynamic procedure.

The objective of this study is to investigate further
the applicability of the proposed SGS stress models
to the flow with passive scalar or the buoyancy-
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driven flow. Accordingly new SGS flux models are
proposed based on the analogy of the previous SGS
stress models. We will also mention the anisotropic
effect of the SGS flux models. A comparison of the
proposed SGS stress and flux models with the
dynamic Smagorinsky’s model is made on the plane
channel flow with passive scalar transport and the
Rayleigh-Bénard convection. We especially focus
on the proposed models’ sensitivity to the discretized
filtering operation.

NUMERICAL SCHEME

~Governing equations

In this study, incompressible flows with passive
scalar and thermal convection are considered. The
governing equations of LES for such flow fields
consist of the continuity equation, the momentum
equations with or without buoyancy term and the
transport equation of heat or scalar. The normalized
governing equations are given by following

equations.
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Here superscript of “g” represents grid filtering

operation. In eq. (3), ©o s the volumetric source
term of scalar or heat. The last terms of egs. (2) and
(3).are the SGS stress and flux which must be
modeled,

T, = (u,- uj)g — u$ us

qj:(Buj)g—Bguﬁ.
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Discretization of the governing equations

Governing equations given by egs. (1), (2) and (3)
are discretized based on FDM.  The newly
developed 4th order accurate finite difference
schemes proposed by Morinishi et al.(1998) is
adopted in which both momentum and kinetic
energy are conserved at the 4th order accuracy in the
discretized sense in a staggered grid system. A
semi-implicit time marching algorithm is adopted in
which normal wall direction of the diffusion terms



are only implicitly solved with the Crank-Nicolson
scheme while the third order Runge-Kutta scheme is
used for the other terms.

Discretization of the filtering operation
The spatial filtering operation can be expressed as

+

fF(x,t)=f G(x-=x3;A") f(x,t)dx
— (6)

in which G is a filtering function to eliminate the

small-scale components of turbulence with a

characteristic length A* . When we apply the Taylor
expantion to the filtered value, we can obtain the
differential form of the filtering operation at the
forth order of accracy (Leonard, 1974) which is
expressed as
F _ (Af)z azf { F 4}
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Filtering is conducted only for one direction for
simplicity. We should note that at the 4th order of
magnitude for the filter width, both Gaussian and
top-hat filtering function give the same formulae.
When we apply the second order central FDM to the
second term of the right-side of eq. (7), we can
obtain the following discretized filtering operation,

2
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Here only for this equation, subscript denotes the

stencil of a grid for FDM and h, is the width of the
grid. It should be noted here that the ratio of the

characteristic filter width Al and the grid width hy
is the parameter of the discretized filtering operation
which must be determined prior to the numerical
simulation.

SGS MODELING

Dynamic procedure

In the dynamic procedure of Germano et al. (1991),
test filtering operation is adopted which is indicated
by superscript of “T” in this study. Accordingly
subtest-scale (STS) stress and flux also must be
modeled wh;ch are given as

T,= (u,- uj)g — us" us” ©)

_ gT T
Q;=(6u)" -6 us™ . (10)

In the original procedure, Germano et al. proposed
to use Smagorinsky’s representation for the SGS and
STS stress modeling.
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Throughout the history of SGS modeling, the
determinatin of the model coefficient C in the eddy
viscosity representation has been one of the main
problems. Germano et al. found following identity
between the SGS and STS stress,

T = (e 48\ T 8T —
T, - )= (upus) —ufTus” =L, , (14)

in which right-hand side consists of resolvable value
even though left-hand side is made up of the
unknown SGS and STS stresses.  When we
substitute modeled SGS and STS stresses of egs.

(11) and (12) into eq. (14), the error between Li

and 1= Ti s given as,
eU=LU+2CMij (15)
2 . . 2 T
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in which model parameter C is supposed to be
constant during the test filtering operation. Lilly
(1992) modified the original procedure and obtained
the model parameter using least square method to
minimize the above error tensor of eq. (15) as
1 (LM
2(M,M,) an
In eq. (17) an angle bracket means an averaging
operation to avoid negative coefficient which causes
numerical instability. In this study, averaging is
conducted for the statistically homogeneous
direction, e.g., streamwise and spanwise directions
in case of the channel flow.
Following the same manner as the SGS and STS
stress, model parameter included in the SGS flux
also can be obtained using the dynamic procedure
(Cabot and Moin, 1993). When we adopt an
analogous eddy diffusivity models  with
Smagorinsky’s model to the SGS and STS flux,
these two flux can be expressed as
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For the SGS and STS flux, we can obtain the
relation
Q;-q''= (93 u;’)T— 0¢T us" =F,
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Conclusively the model parameter can be obtained
by
(7,1,
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Problems of the original dynamic procedure
Two problems arise from the original dynamic
procedure.

Firstly the ratio of the STS and SGS length scale

AT [ A8 . . .
. must be determined prior to the numerical



simulation. Previous report showed strong
dependence of the predicted statistics on the value
(Cabot and Moin, 1993). In this study, we adopt the
AgT / Ag — 22/3

facts: AT AT =2 is d ]

; proposed for each filtering
direction in Spectral method (Germano et al., 1991),
no filtering is considered for normal wall direction,
and the length scale in egs. (11) and (12) is given by

AF = \JASNSAE AT = AT ASAYT

¢ an
for y direction).

Secondly Tsubokura et al.( 1997) pointed out that
dynamic Smagorinsky’s model showed strong

dependence on the filtering parameter AT/ h
required for the explicit fest filtering operation
discretized by FDM(see eq. (8)). That is to say, the
original procedure using FDM has two important

parameters of AT ¥ and A"1h which sensitivly
affect the predicted statistics. It is not easy to
optimize these two values at various flows. In fact,
it is well known that when we apply this procedure
to the simple turbulent channel flow using lower
order FDM, excessivly large streamwise mean
velocity and turbuelnt intensity are predicted even
though the same model parameter as the spectral

method is adopted for A ¢ (Cabot and Moin,
1993, Tsubokura et al., 1997).

value considering the following three

(no filtering

SGS stress modeling
Tsubokura (2001) proposed to use following
isotropic eddy viscosity representation instead of
Smagorinsky’s model for the dynamic procedure
using FDM in the sense that numerical error between
Ly ana My

Smagorinsky’s,
T, - %6,,1“ =-2C {(uf uf)’ —ugs uf3> S8/ s%]

is more consistent than that of

(23)
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The notable features of these representation are as
follows.
Firstly explicit SGS or STS length scale of 4% or
A*" included in the Smagorinsky’s is not contained
in these models. Accordingly we do not have to

determine the filter ratio of AT/ A% prior to the
simulation.

Secondly strain rate tensor is divided by its
magnigude, the effect of numerical error caused by

the strain rate tensor on the representation of M,
may be less sensitive than that of Smagorinsky’s.

That is to say, numerical error of My i mainly
determined by the representation of the velocity
scale of eddy viscosity. Considering this opinion,
egs. (23) and (24) can be finally obtained (for the
detail, see Tsubokura, 2001).
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According to the numerical tests of simple channel
flows at the Reynolds number of up to 590, these
representation was found to eliminate the
overestimation of mean velocity profiles at the log
law region observed in the original dynamic
Smagorinsky’s model.

The most notable feature of the proposed model is its

insensitivity to the fest filtering parameter, AT h
In other words, even though the representation of
egs. (23) and (24) includes both explicit grid and test
filtering operations, results are only sensitive to the

grid filtering parameter of A*lh

SGS flux modeling

Analogous eddy diffusivity models to the proposed

eddy viscosity models given by egs. (23) and (24)

can be easily obtained as

g,=-C, {(uf uf)g —uge uf’*’} /|8 [ L
0x; (25)
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These are the typical gradient-diffusion models in

which - SGS or STS flux is supposed to be

proportional to the gradient of the scalar. As the first

step to predict an anisotropic effect of SGS flux,

following expressions are also possible,
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Eq. (27) can be obtained by following the method
proposed by Yoshizawa et al. (1996). They derived
the SGS stress model as the product of the
production term of its transport equation and
turbulent time scale under the assumption that in
SGS field, production of the stress is dominant
among the others. The production term of the SGS
flux transport equation is given by
g duf’

ox, 4 ax; (29)
Here when we consider the isotropic representation
for the SGS stress appearing in the first term of the
right-side of eq. (29) to obtain the gradient-diffusion
term, anisotropic SGS flux model can be obtained by
just multiplying the time scale T to the modified

production term,
ous”
43 x;
. (30)

T 0087
q;=-T {%666;] +
When the time scale, SGS stress and SGS flux
included in the right-side of eq. (30) are modeled
considering the consisitency of the numerical error
between F; and H, in eq. (21), egs. (27) and (28)
can be derived.

Pj=—1:



RESULTS

The proposed SGS flux models given by egs. (25)
and (26) or egs. (27) and (28) is tested in actual
numerical simulations. For the SGS stress models,
we adopt the previously proposed representations
given by egs. (23) and (24). It should be noted here
that these models contain both explicit grid and test
filtering operations. But as is mentioned before, the
remarkable feature of the SGS stress models is that
they are less sensitive to the test filtering parameter.
Therefore the major objective of the actual
numerical simulations here is to investigate how
such insensitivity of the SGS stress models is
inherited to the SGS flux models.

Discretized filtering parameter

To study the sensitivity of the SGS stress and flux
models, three values for both grid and test filtering
parameters are considered which are summarized in
Table 1. The parameter is denoted by capital letter
for the test filtering while grid filtering is given by
small letter. For example the discretized filtering

(A7 /h)* =4 and

operation of (Ab) indicates

(A% /n)* =413

Channel flow (passive scalar case)

The simple turbulent plane channel flow with
passive scalar transport is solved here to see the
fundamental property of the proposed SGS scalar
models. A flow itself is driven by constant pressure
gradient for streamwise direction. Periodic
boundary condition is adopted for streamwise and
spanwise directions while no-slip condition is
considered on the wall Reynolds number

normalized by friction velocity (¥+) and channel
half width (J) is set to 180 in this case.
Computational domain size is set to 4776 and 276 for
streamwise and spanwise direction. Total grid
number is 32, 64, 32 for streamwise(x), normal-
wall(y), and spanwise(z) direction respectively. The
molecular Prandtl number is set to 0.7 (air) in this
study. Two types of wall boundary conditions are
considered for the passive scalar. Type I is the
condition in which the scalar is uniformly produced
within the fluid and removed at both walls.

6% =0 on the both walls
Typel . .
©,=1 in the fluid
(32)
The other is the condition in which the scalar was
input to the flow at one wall and removed at the
other side.

/
\

6% =1 on the lower wall
TypeIl { 6%=0 on the upper wall

©,=0 in the fluid
(33)
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Table 1: Parameters for discretized grid and test
filtering operations

(af/m)* | 1
(a7 /)’

Figs. 1 and 2 shows mean velocity and scalar
profiles of Type I condition predicted by
Smagorinsky’s and proposed models at various
filtering parameters. DNS results were obtained by
Horiuti(1992). For the Smagorinsky’s models, SGS
stress models of egs. (11) and (12) with SGS scalar
models of eqgs. (18) and (19) are used. For the
proposed models, SGS stress models are given by
eqs. (23) and (24) while SGS flux models are eqgs.
(25) and (26). We can clearly see the overestimation
of the Smagorinsky’s models in both velocity and
scalar profiles while proposed models mitigate such
tendency. Another important feature of these two
figures is the sensitivity of Smagorinsky to the
discretized test filtering parameter. As has already
been reported(Tsubokura, 2001) but the proposed
SGS stress models is less sensitive to the discretized
test filtering parameter which is indicated in Fig. 1
(note that results of (Ab) and (Cb) are almost
identical in the figure). Such insensitivity of the
proposed models is willingly inherited to the SGS
flux models which is shown in Fig. 2. We can
observe that mean scalar predicted by proposed
models shows almost identical profiles between (Ab)
and (Cb) cases. While Smagorinsky’s model
extremely overestimate the scalar profiles with the
dependance on filtering parameters.

To further study the dependence of the proposed
SGS flux models on the discretized filtering
parameter, predicted turbulent flux is indicated in
Fig. 3. We should notice that statistics of passive
scalar are affected by flow field. Therefore filtering
parameter is fixed to (Ab) for SGS stress models and
only the parameter for SGS flux is changed for Fig.
3. In both types of conditions, proposed SGS flux
models favorably show almost identical results
between (Ab) and (Cb) cases which definitely say
the insensitivity of the proposed SGS flux models on
test filtering parameter. But important results of
Type I is that (Bc) predicts better correlation with
DNS than (Ab) and (Cb). According to the previous
study, optimized grid filtering parameter for the
proposed SGS stress models in turbulent channel
flow was (b). Therefore there is a possibility that
optimized value is different between flow field(or
SGS stress) and scalar field(or SGS flux). These
difference might come from the difference of
molecular viscosity and diffusivity (Prandtl number
is 0.7 in this study), but further work is remained in
future.
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Fig. 1: Mean velocity profiles (Type I)
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Fig. 3: GS turbulent flux (left:Type I, right:Type II)

(Dependence of the proposed SGS flux model on the
filtering parameter when the parameter for the SGS
stress models is fixed to (Ab).)

Finally we would like to see the anisotropic effect on
SGS flux. Fig. 4 indicates turbulent scalar flux and
scalar r.m.s. predicted by egs. (25), (26) (Isotropic)
and egs. (27), (28) (Anisotropic). We can identify
that the overestimation of the isotropic models are
clearly improved by the anisotropic models.

Rayleigh-Bénard convection (buoyancy-
driven case)

The proposed models(egs. (23)(24)(25)(26)) are
applied to the Rayleigh-Bénard convection. Here,
thermal  convection  between the  square
plates(7.92Hx7.92H) is solved where H is the
distance of each plate. Periodic boundary condition
is adopted for horizontal direction while no-slip
condition is supposed on the wall. In this study,
Rayleigh number and Prandtl number is set to

Ra=H’Bg AT | k v=3.8x 10° CPr=07 hich is
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Fig. 4: GS turbulent flux and scalar rms.(Type I)
Isotropic vs Anisotropic SGS flux models
(Filtering parameter is (Ab))

the same as the DNS obtained by Grotzback. When

representative velocity is given as u,=x/H
Reynolds and Richardson number in egs. (2) and (3)

are given as Re=1/Pr gnq Ri=Ra-Pr o) orig
number used is 32x32 for horizontal dlrection while
64 grid is allocated for normal wall direction
otherwise stated.

Figs. 5 and 6 indicate GS scalar r.m.s. and turbulent
intensity for normal-wall direction predicted by
Smagorinsky’s and proposed models at various
filtering parameters. At this low Rayleigh number
flow, both models predict acceptable statistics at the
resolution adopted here. But important difference
between them is that proposed models was found to
be less sensitive to the fest filtering operation ((Ab)
and (Cb) correlate very well) while Smagorinsky’s
show certain difference depending on the test
filtering parameter. Another problem of
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Fig. 5 : GS scalar rms. (Rayleigh-Bénard) Fig. 6 : GS turbulent intensity(Rayleigh-Bénard)

Smagornsky’s vs Proposed
(Dependence on the filtering parameter)
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Fig. 7 : Eddy viscosity (Rayleigh-Bénard)
(left: 32x32 mesh, right: 64x64 mesh)
Smagornsky’s vs Proposed
(Dependence on the filtering parameter)

Smagorinsky is that negative eddy viscosity is
estimated at the center region between the plate in
case coarse mesh(32x32 for horizontal) when the
filter parameter (B) or (C) is adopted which is
indicated in Fig.7(left)(In the simulation, negative
eddy viscosity was set to zero to avoid numerical
instability). = While such an ill-condition of the
dynamic procedure is eliminated by using finer mesh
(64x64) (Fig.7, right), this is definitely the another
problem of the Smagorinsky’s dynamic procedure
using FDM.  Contrarily to the Smagorinsky,
proposed model does not predict the ill-condition at
the center region while slight negative value is
estimated at the vicinity of the wall. The
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Smagornsky’s vs Proposed
(Dependence on the filtering parameter)

Smagorinsky’s models also show the ill-condition
near the wall even though its absolute value is
smaller than the proposed models. We may say that
this ill-condition of both models at this region
indicates the limitation of the isotropic eddy
viscosity and diffusion models to such a region or
the fundamental problems of the dynamic procedure
adopted here (such as the plane averaging in egs.
(17) and (23)).

RESULTS

SGS flux models were proposed for the dynamic
procedure using FDM based on the method
previously proposed for the SGS stress models.
Proposed SGS stress and flux models predict better
statistics on the turbulent channel flow with passive
scalar and Rayleigh-Bénard convection than
Smagorinsky’s. The advantage of the previously
proposed SGS stress models such as the insensitivity
to the explicit test filtering operation was found to be
satisfactry inherited to the SGS flux models.
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