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ABSTRACT

A review of selected experiments on co-
herent structures in turbulent shear flow
is performed.  Different experimental ap-
proaches (conditional averages, filtering tech-
niques, wavelets, Linear Stochastic Estimation
and Proper Orthogonal Decomposition) are il-
lustrated and their links with computations
(LES, DNS, SDM,...) are emphasized. Par-
ticularly it is shown that some kind of univer-
sal behavior of the background turbulence can
be retrieved from these various experimental
methods.

INTRODUCTION

The existence of coherent or organized mo-
tions has been well admitted for at least the
last two decades. Although there is no defini-
tive consensus on the definition of Coherent
Structures (CS), an organized character, at
large scales (of the order of the character-
istic gradient zones) of most turbulent flows
is generally observed, mainly from visualiza-
tions. However, as far as turbulent flows are
concerned, such CS are embedded inside a
randomly distributed field and their identifi-
cation and characterization is not straightfor-
ward. This identification has to be done for
several purposes: first, for a simple energetic
point of view, because CS can represent from
10 % (for boundary layers, far jets), up to
20 % (far wakes, plane mixing layers) or 25 %
(near wakes or jets) (after Fiedler, 1998). Sec-
ond, because the dynamical properties of CS
play an essential role in mixing processes, drag,
noise emission, etc. The energy content of CS

is not the only characteristic that has to be
addressed, and their redistributive capacities
are also of crucial importance. The impact on
flow measurement and on data processing tech-
niques is obvious. Simple, one-point statistics
are not sufficient for a correct characterization
of most turbulent flows. In addition, the choice
of any predictive approach has also to be made
with respect to the organized character of the
flow.

The one-point statistical closure methods
(RANS: Reynolds Averaged Navier Stokes),
and among them the popular one-point statis-
tics (k — ¢, RSM: Reynolds Stress Modeling)
simulations ignore the CS influence. For many
applications, these predictive approaches are
successful but for others, it appears necessary
to take into account the large scale structures
for better predictions. This reasoning has led
to the development of LES (Large Eddy Simu-
lation: see Lesieur (1990), Lesieur and Métais
(1996),... for reviews), and, more recently to
the introduction of SDM (Semi-Deterministic
Method: see Ha Minh, 1994, 1999), TRANS
(Transient Averaged Navier Stokes: see Ken-
jeres and Hanjali¢, 1999). Another recent con-
cept, called CVS for Coherent Vorticity Simu-
lation, has been built that is based on a parti-
tion of the flow into randomly distributed back-
ground and organized (the rest of the field)
turbulence (see Farge et al., 1999).

The RANS require only conventional statistics
as initial conditions. In contrast, the other
methods require more detailed information on
the large scale instantaneous organization of
the flows for initial conditions and also for val-
idations. Then, it becomes more and more im-



portant to produce experimental data adapted
to such constraints. Some efforts have already
been devoted to such an approach (see Adrian
et al., 2000a, 2000b).

As far as the experiments are concerned, the
main goal is to extract, from the overall tur-
bulent fluctuating field, the so-called Coherent
Structures. Several new tools have been inten-
sively developed both for ad-hoc flow probing,
for advanced data processing and for CFD pur-
poses. Two point statistics have also been
used from many years to evidence such large
scale behavior (Townsend, 1976, Favre et al.,
1976). Rapid progresses in these fields have
been recently observed. For example, the Par-
ticle Image Velocimetry (PIV) is now efficient;
also, the number of Hot Wire (HW) probes
that can be used simultaneously has drastically
increased (Fig. 1).

The purpose of this paper is to present a review
of Coherent Structures identification methods
in turbulent flows and their possible influence
on computational methods. As a first step,
we review the different ‘filtering’ concepts used
in several numerical methods. The counter-
part for experimental approaches is then re-
called and compared, with a particular em-
phasis on stochastic approaches based on two-
point statistics. Lastly we present briefly some
new applications of advanced data processing
for the generation of realistic initial conditions
that are able to represent the large scale be-
havior of turbulent shear flows.

FILTERING APPROACHES FOR NUMERI-
CAL SIMULATIONS

As above mentioned, LES and SDM are
among efficient methods for predicting most
flows, in which the large scale organization
plays an important role. These two approaches
are similar in a sense that both involve a fil-
tering process: a low-pass filtering (LES) or a
more global filtering approach (SDM). Figure
2, after Ha Minh illustrates, these concepts.
LES takes into account the unresolved scales
(at the level of the computational mesh) by
a specific closure, relating these small scales
to the resolved quantities. LES involves a
‘low-pass’ filter, in a conventional Fourier de-
composition sense. SDM postulates that the
turbulent field can be decomposed in term of a
coherent (deterministic) part, directly related
to the flow configuration, on which a random
(more universal) part is superimposed. In this
case, the applied filter does not correspond
to a cutoff filter as for LES. Indeed, as we

(b)

Figure 1: Examples of multi-probes rakes of hot-wire. (a)
138 single wires, measurements in a round jet — after Citriniti
(1996); (b) 33 X-wire probes (66 wires), measurement in a
turbulent mixing layer — after Druault (1999)
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Figure 2: Schematic description of LES and SDM, after Ha
Minh (1994). Vertical axis: turbulent energy, horizontal
axis: wave number (arbitrary units)



will demonstrate in the following, experimen-
tal results show that any coherent structure
covers the whole spectrum. The filter used
by SDM can be considered as a ‘structure fil-
ter’. Following this approach, the filtered part
is resolved by schemes comparable to DNS.
Additional universal transport equations are
to be used for the random part, the coherent
and random fields being coupled by a specific
closure. Farge and co-workers have recently
proposed a new simulation approach (CVS)
based also on the representation of turbulent
flows in two parts: one part considered as being
out of equilibrium, the other being considered
as ‘thermalized’ motion (Farge et al., 1999).
In some sense, these two last approaches are
both based on a structure filter, but the SDM
uses the CS as the major definition (the ran-
dom part being the rest of the fields), when
CVS considers that the random field is the
thermalized part, the CS part being consid-
ered as the rest of the field. LES, SDM and
CVS are related to the so called triple decom-
position introduced by Reynolds and Hussain
(1972) where the instantaneous turbulent field
u, is separated in an average contribution (in
the sense of the conventional Reynolds decom-
position) and a fluctuating part w. This con-
tribution is itself decomposed into a coherent
part u, and a random part u,:

— /
u=u+u, where : v = u; + u,.

As above mentioned, the respective definitions
of u, and u, will depend upon the method con-
sidered. In this decomposition, the coherent
part can be used to build an ensemble aver-
age that corresponds either to the averaging
of similar events or to a phase average (this
last method being particularly efficient in ex-
cited flows). An important notion is implicitly
included in the definition of this approach: co-
herent and random parts are not correlated
(i.e. < ucu, >=0).

There is no formal difference in the form of
the filtered equations which are used for both
approaches. Because only the applied filter
differs, then comparable terms appear (e.g.
Leonard’s terms...).

COHERENT STRUCTURE FILTERING

The detection methods can be classified de-
pending on the associated CS definition, that is
not universal (Bonnet et al., 1998) and depends
on the available information. Table 1 provides
a general overview of the different methods.
We do not, in the present paper, address the

Table 1: A tentative of classification of CS identification
methods

RAW VISUALIZATIONS

— Particle Image Velocimetry (PIV)
— Pseudo Flow Visualization (PFV)
— Iso-Vorticity

— Sectional Streamlines

CONDITIONAL Non-CONDITIONAL

o Detection: (< CS definition)
- Fluctuation Levels

e Space-Time Correlation
& Spectral Analysis

- 4 Quadrants & Filters

- Variable Integration ¢ POD
Time Averaged (VITA)

- Gradients

- Window Averaged
Gradient (WAG)
- Contaminant:
temperature,...
- Visualizations
- Critical Points
e Pattern Recognition (PRA)
e Linear Stochastic Estimation (LSE)
o Wavelets

STATISTICS

- Ensemble Average - Most Probable Charac.
- Multiple Decomposition - POD

- CS Dynamics - Dynamical Systems

- Statistical Properties

DYNAMICAL SYSTEM IDENTIFICATION

Lyapounov Exponent
High Order Statistics

conditional sampling approaches more or less
related to the initial double/triple decompo-
sition. Examples of typical coherent patterns
obtained by such an approach are shown for
a backward facing step and a turbulent plane
mixing layer on Fig. 3. Fig. 3.a illustrates
the use of the Delocalized Conditional Sam-
pling (DCS) in a plane turbulent mixing layer,
on Fig. 3.b, the Vorticity Based detection has
been carried out in the case of a backward fac-
ing step and on Fig. 3.c a WAG detection is
applied to the turbulent mixing layer.

A consensus on which type of event (CS) can
be deduced from the various approaches gen-
erally used has been established. For exam-
ple, on a common data base, obtained with
HW-rakes in a plane turbulent mixing layer
(available as a database in the AGARD WG21
(1998)), we compared in a collaborative man-
ner (six research teams were involved at this
occasion) different detection schemes: Delocal-
ized Conditional Sampling (DCS: Bellin 1991,
Vincendeau 1995), Window Averaged Gradi-
ents (WAG: Antonia and Bisset,1995), Vor-
ticity based (Hussain and Hayakawa 1987),
Wavelets (Kevlahan et al., 1993). An illustra-
tion of this comparison can be found in Fig. 4.
On this figure, the different times of detections
obtained from different methods are compared
within a given time sample. It was concluded
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Figure 3: Examples of conditional averaged structures. Ver-
tical axis: transverse direction (mean gradient direction);
horizontal axis: time or space direction (using Taylor hy-
pothesis). (a) turbulent mixing layer, all events cumulated
(top) and corresponding to a pairing stage (bottom) — af-
ter Vincendeau (1995); DCS detection. (b) shear layer of
a backward facing step (X/H=4.2); vorticity based detec-
tion — after Aubrun (1997). (c) ‘large scale structures’ of
the turbulent mixing layer: sectional streamlines (top) and
iso-vorticity (bottom) — after Bisset and Antonia (Bonnet et
al., 1998); WAG detection.

that, even if the actual detection times can be
slightly different, the same CS are globally ex-
tracted by these schemes. Moreover, all these
detections pointed out more or less to the same
events as unconditional ‘stochastic methods’
like POD or LSE.

Note that, from a conditional sampling, mainly
ensemble averages are obtained and typical
patterns of CS can be deduced. Moreover, a
description or contribution of the CS can be
obtained only when a CS is present. This ap-
proach is therefore not well designed to provide
a temporal, ‘continuous’ description of the con-
tributions of the coherent and random parts.
Continuous time filtering methods are then re-
quired for such a purpose and some kind of
‘structure filtering’ process needs then to be
introduced.

In the following, we focus on signal decompo-
sitions based on non-conditional approaches,
that can be of help for structure filtering the
turbulent field. These approaches also make it
possible a dynamical analysis of CS.

HARMONIC AND ADAPTATIVE FILTERS

The first decomposition that can be used
is naturally the harmonic (Fourier modes) de-
composition. This decomposition can either be
used for low-pass/high-pass filtering (as in a

Figure 4: Comparison of different detection procedures ap-
plied to the same time sample, measured in a plane turbulent
mixing layer (rake of 12 X-wire probes, lying across the mix-
ing layer); after Bonnet et al. (1998). Top: instantaneous
plot of velocity vector (in a z —y plane); vertical axis: trans-
verse direction; horizontal axis: time (the total duration of
the presented sample corresponds to 0.128 second). Bottom:
time stamps of detections for: (a) Wavelets; (b) PRA ; (c)
Vorticity based ; (d) WAG: A detection based on v; ¥ de-
tection based on spanwise vorticity at the mixing layer axis;
* pairing; (e) DCS.

LES approach) or for a band-pass/band-reject
filtering. It is of interest in the case where
a clear typical frequency (in space or time) is
present within the experimental signal. This is
the case for shedding wake, artificially excited
flow, etc. However, this approach is limited in
nature and requires to separate, for the given
bandwidth, the part which is attributed to CS
and the part which is due to the background
turbulence. This represents an orthogonaliza-
tion problem. The following examples illus-
trate this approach. First, in an attempt to
build what they call a turbulence filter, Brere-
ton & Kodal (1994), Fig. 5, used a filtering
procedure of PIV data based on an adaptative
filter. Second, a similar approach was applied
by de Souza (1996), in the case of the wake
of a cylinder, by using a Fourier filtering of
the time series of the signals obtained with a
rake of hot wires (see Fig. 6). These methods
are generally limited to one-point information.
In most flows however, the typical frequency
can depend upon the quantity observed (e.g.
the corresponding velocity component, the vor-
ticity,...), an on the location in space; then
more sophisticated filtering methods, such as
wavelet-based methods have been developed.

WAVELETS FILTERS

When spatial representation of the flow is
available in time (for example time resolved
PIV, rakes of HW-sensors), an alternative is to
use the wavelet transform in a 2D plane. By
using a ‘mask’ (equivalent to a band-pass fil-
ter), we can extract the CS signature (Lewalle
et al., 2000). An example of the statistics of
the CS and background signals obtained in a
mixing layer (still obtained on the above men-



Figure 5: CS extraction via Adaptative Filters after Br-
ereton and Kodal (1994). (a) Measured energy spectra of
u(t) and estimated coherent and random energy spectra in
a flat-plate boundary layer undergoing forced sinusoidal free-
stream oscillations. Horizontal axis: frquency. —, spectrum
of u; - - - coherent part spectrum, . .. random part spec-
trum. (b) Vector plots of the coherent and random part
(from a PIV measurement at the edge of a jet flow).

tioned data base) is given by Fig. 7. This
figure shows that the background turbulence
has a spectra close to homogeneous grid tur-
bulence one and that its probability density
function can be assumed to be quasi-Gaussian.
This result corroborates the results of Farge et
al. (1999), who use this concept as a defini-
tion for CS as discussed earlier for the CVS
method. These decompositions also perfectly
correspond to the SDM proposed by Ha Minh.

Alternative concepts not based on frequency
signature but based on stochastic properties,
can also be introduced.

LINEAR STOCHASTIC ESTIMATION

In the Linear Stochastic Estimation (LSE),
introduced by Adrian (1975), some reference
signals are considered as conditioning the rest
of the signals. In this approach, one tries to lin-
early estimate u(x,t), the conditional flow field
from the knowledge of N, references p,. This
estimation is performed through the knowledge
of the two-point correlation tensor. Symboli-

Figure 6: CS extraction via Fourier Filters in the near wake
of a cylinder, after de Souza (1996). (a) typical spectrum
of the u velocity component exhibiting a sharp peak. (b)
Sectional streamlines of the raw (top) and filtered (bottom)
velocity. Vertical: transverse direction; Horizontal time
(sample length 10 ms); measurements are performed 4.25
diameter downstream the cylinder trailing edge.

cally, the LSE can be written as:

Ny
i@, 0) =Y ar(@) prlt).
r=1

An illustration of this method is given on
Fig. 8. By combining pressure transducers
placed in the vicinity of a turbulent jet, and a
rake of hot wires lying in the shear zone of the
jet mixing layer, estimated velocity fields, in-
duced by the instantaneous longitudinal pres-
sure distribution was obtained by Picard and
Delville (2000).

Such a method is very useful for simple esti-
mation of instantaneous field, this estimation
being considered as a conditional one. The
important difference with conventional condi-
tional method is that LSE does not require
any thresholding or adaptation procedure. The
only parameter to be chosen is the location and
nature of the reference signal(s). Another ad-
vantage is the possibility of association with
other methods, particularly with the POD.
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Figure 7: CS extraction via a wavelet mask in a plane tur-
bulent mixing layer. (a) Vector plots of original velocity
field, wavelet-filtered (coherent) field and random field. Ver-
tical axis: transverse direction; horizontal: sample duration
10 ms; (b) Power spectra of the original (solid), coherent
(dashed) and random (dotted) traces of the v component at
the mixing layer center; (c) Probability densities for the v-
component of the coherent (dashed) ans background (solid)
at the mixing layer centerline. The range shown covers about
5 standard deviations on either side of the mean. After Bon-
net et al. (1996) and Lewalle et al. (2000).
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Figure 8: CS eduction from LSE. Estimated velocity vector
field induced by the instantaneous axial pressure distribution
in the near field of a round jet — after Picard and Delville
(1999): 16 microphones + 12 X probes are simultaneously
used.
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Figure 9: CS extraction in an axisymmetric jet (measure-
ments through a rake of 138 probes) via POD after Citriniti
(1996). (a) Raw fluctuating longitudinal component of ve-
locity; (b) Contribution of the first radial POD mode and
the first 6 azimuthal modes.

PROPER ORTHOGONAL DECOMPOSI-
TION

Another type of decomposition is the Proper
Orthogonal Decomposition (POD: Lumley,
1967) or its generalization, the Bi-Orthogonal
Decomposition (BOD: Aubry et al., 1991). In
this case, the modes on which the ‘signal’
is projected are the own, intrinsic, modes of
the flow. These modes are representative of
energetic events. They are determined from
the two-point correlation tensor by solving an
eigenvalue problem. Symbolically the instan-
taneous contribution of the POD mode can be



written:
u(n) (:Ba t) = an (t) (I)(n) (.’L‘),

where ay, (t) is obtained by projecting the flow
realization u(z,t) onto the POD eigenvectors
®(™)(g):

an(t) /D w(z,t) ™) (z)dg,

where &™) is solution of the eigenvelue prob-
lem:

/ < u(z, ) u(e,t) > 8™ (7') do’ = An)d™ (z
D

This method can be applied to turbulent data
coming either from hot wire rakes (in this case
the conventional POD is used), or from snap-
shot results (from PIV for example). In this
last case, the snapshot POD is used (Sirovich,
1987).

Intensive experimental studies on POD, ap-
plied to the axisymmetric mixing layer, have
been performed in Clarkson University and in
SUNY Buffalo. A nice illustration of these
studies, obtained by use of a home-made hot
wire rake with 138 probes (see Fig. 1a), is
shown by Fig. 9. A spectacular illustration of
the capacity of POD to capture the energetic
modes of turbulent flows is given on this figure.

In the case of plane turbulent mixing layers,
recent results have been obtained by Delville
et al. (1999) from two rakes of 12 X-wires
probes lying in the (y, z) plane (i.e. normal to
the mean convection velocity). A 3D descrip-
tion of the first POD mode was then provided
(Fig. 10-a). This mode, exhibits a A-shape
spatial organization which compares quite fa-
vorably with several direct visualizations of
mixing layers obtained either from experiments
or from numerical simulations (Lesieur, 1990).
From the same data, Druault (1999) computed
the ‘coherent’ and ‘random’ spectra that can
be defined by truncating the series to the four
first POD modes. The first modes clearly ex-
tracts the typical frequency peak associated to
the Kelvin-Helmoltz 2D instability. The rest
of the signal (corresponding to the remaining
modes) exhibits a spectrum corresponding to
an homogeneous (equilibrium) turbulence. A
comparable behavior has been observed from
the wavelet mask method (Fig. 7-b). However,
from the POD approach, the coherent part
(here the four first modes contribution) is more
broad-band than for wavelet filtering. This
characteristic shows that the CS detected from
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Figure 10: CS extraction via POD in a plane turbulent
mixing layer. (a) after Delville et al. (1999). Iso-surfaces
of constant velocities (v component). Plotted is the con-
tribution of the first POD mode obtained via a shot-noise
description. Dark grey v > 0, light grey v < 0. (b) after
Druault (1999). Here are plotted, vs. frequency, — the di-
rectly measured v spectrum (original), - - - the contribution
of first four POD modes to this spectrum (coherent) and ...
the spectrum of the remaining modes (incoherent).

POD are not spectrally localized, they corre-
spond to multiple scales and cannot be seen
as usual filtering in time or space. A recent
comparable comparison has been performed by
Yilmaz and Kodal (2000), in a forced jet flow.
They also showed that the POD ‘filtering’ gives
more broad band CS when compared to adap-
tative filtering.

POD/LSE COMPLEMENTARY TECH-
NIQUE

The determination of the correlation tensor
requires only a two-point measurement pro-
cedure. However, the projection (equivalent
filtering) process needed for CS eduction via
POD (or BOD) necessitates the knowledge of
instantaneous velocity in several points. De-
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Figure 11: CS extraction via the Complementary Technique
obtained at the end of the potential core of a turbulent plane
jet after Faghani (1996). Plotted are samples of the instan-
taneous contribution of the first two POD obtained from
only two X probes (arrows).

pending on the measurement apparatus, this is
not always possible. For example, it is some-
times difficult to operate simultaneously sev-
eral hot wire probes. In this case, the LSE,
also based on two point correlations, allows to
estimate the raw data on which POD can be
used as a structure identification process (by
retaining only a few number of modes). This
approach, called complementary method has
been introduced by Ukeiley et al., (1993) and
Bonnet et al., (1994). It has been recently used
by Faghani (1996). From the measurements
obtained with only 2 probes, it is then possible
not only to reconstruct the entire dynamical
behavior of the CS, but also to apply the POD
in his wider extend. Figure 11 gives an ex-
ample of such an analysis obtained in a plane
turbulent jet.

In conclusion, stochastic methods are pow-
erful tools for large scale structures analysis in
turbulent flows. Moreover this is not the only
use of these methods. We develop in the next
sections some other applications.

EXTENSIONS OF THE STOCHASTIC
METHODS: GENERATION OF INITIAL
CONDITIONS

When LES or DNS are concerned, the de-
termination of initial conditions, dynamically
representative of the CS is crucial. It is clear
that prescription of the correct initial value
of the one-point statistics (such as RMS val-
ues of velocity fluctuations) is not sufficient.
The generation of time series with correct
spectral distribution improves the results and
limits the adaptation time of LES. However,
it becomes clearer and clearer that the large
scale dynamical behavior of the initial condi-
tions has to be known for ideal LES (Adrian
et al., 2000a). Recent approaches based on

12
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Figure 12: Generation of upstream conditions for a DNS
by using LSE after Druault (1999). (a) A plane mixing
layer is simulated on a large domain: inlet conditions are
then conventional ones — mesh: 301x97x48; (b) A new
simulation is performed by using as inlet conditions the ve-
locity measured at a given section of the first computation
(X ~ 0.5 L;). Information retained: 3 components on
97x48 points. ; (¢) A simulation is performed by using as
inlet conditions the estimated velocity (through LSE). In-
formation retained: 2 components on 3x15 points. Data
compression ratio: 155.

CS eduction/characterization have been ap-
plied in order to retrieve, from a minimum
amount of data, the realistic dynamics of the
CS that are needed for initializing LES or DNS
computations. Two examples, in a turbulent
plane mixing layer and in a turbulent boundary
layer are given on Figs. 12 and 13 respectively.
In these examples, initial conditions for DNS
(Fig. 12) and LES (Fig. 13) are generated from
the knowledge of the correlation tensor and a
limited number of time series (see figures cap-
tions). The correlation tensor used for LES
purpose can be obtained either from precursor
computation as was done by Druault (Fig 12)
or from an a-priori knowledge of the flow as
was done by Peneau (Fig. 13). Even if a few
time series are obtained from precursor com-
putations, the resulting storage requirements
are very low. It appears that the LSE can be a
powerful tool for an efficient use of DNS/LES,
allowing for a minimal ‘adaptation period’ of
these methods.

CONCLUDING REMARKS

The concept of CS, initially introduced for
a better understanding of the flow, has evolved



Figure 13: Generation of initial conditions for a LES of a
turbulent boundary layer by using LSE after Peneau (1999).
Instantaneous X Z plane shot of the u velocity field at y*t=8.

towards wider ranges of application. It is
now an essential concept for experimental ap-
proaches, that makes it possible to define the
measurement method and apparatus as well
as the appropriate data processing methods.
It is also an essential concept for choosing
the more adapted computational approach, es-
sentially RANS, TRANS, DNS, LES, SDM,
CVS,... Most of these methods take mutual
benefit of their rapid improvements. The ex-
periments are now well resolved in time or
space. Unfortunately, right now, space and
time resolutions are not easy to obtain. For
example, rakes of hot wires have excellent time
resolution, they can collect long duration time
histories, and are able to evidence ‘rare’ events
of practical importance. However, even with
a huge number of probes, this method remains
relatively badly resolved in space (although the
spatial resolution can be close to several indus-
trial type simulations) and remains intrusive.
On the other hand, the spatial resolution of
PIV is well defined. However, for most flows,
PIV is not able to provide time series essen-
tial for the analysis of CS dynamical behavior.
The 3D character of any turbulent flow is also
difficult to address (multiple hot-wires, Holo-
graphic PIV are under progress). The combi-
nation of several experimental methods is now
possible and can overpass the individual draw-
backs. In addition, the combined use of ad-
vanced data processing and huge data storage
capacities can also solve these limitations. The
combination of several advanced experimental
approaches and LES—type CFD is a promising
issue, that may reconcile the experimental and
CFD communities for the next decade.

The authors dedicate
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