GLOBAL INSTABILITY ANALYSIS OF A ROUND JET
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ABSTRACT

In order to investigate the diversity of the
evolution of near-field of a round jet observed
in experiments and in numerical simulations
by different authors, the secondary stability is
analyzed which appears in the early stage of
spatial development of a round jet in its near
field. The secondary instability which is char-
acterized by generation of streamwise vortices
in a braid region between neighbouring vortex
rings is analyzed by a global instability analy-
sis. Unstable modes of disturbances are iden-
tified by the analysis in a base flow of an axial
segment of one pitch of a round jet between
one pair of vortex rings. The linear bound of
their evolution as well as the interaction of each
mode are investigated by introducing these dis-
turbances on the base flow. The key of the role
of these disturbances in the spatial evolution of
a round jet is examined by introducing modes
into the baseflow and the wavelet analysis, etc.
It turned out that the most probable cause of
the diversity of the evolution is a non-uniform
concentration of disturbances in the azimuthal
direction, which is dependent on environmen-
tal disturbances and hence non-deterministic.
This non-uniformity looks like a result of deli-
cate local receptivity of disturbance.

INTRODUCTION

Lots of studies on a round jet have been
conducted and the flow looks like almost com-
pletely understood except for the near flield
of a round jet which is particulary important
in engineering applications. For instance, the
distance of virtual origin from the nozzle exit
scatters pretty largely between authors. The
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manner of the scatter is not consistent and no
persuasive reasoning has been given to this.
In addition, complicated phenomena which are
beyond our understing are also found. An ex-
ample is that the speed of the temporal devel-
opment of streamwise vortices which connects
the region between neighbouring vortex rings(a
braid region) fluctuates with time(Takeuchi et
al, 1999), despite that time-averaged speed of
its development is approximately that of the
least stable mode of disturbance in a braid re-
gion.

The major concern here is whether the scat-
ter of the speed of collapse in the near field
is inherent and substantially unavoidable or
not, if all the predictable source of the scatter
is carefully removed. This problem is treated
here from the view point of the secondary in-
stability which takes place succeeding the pri-
mary instability. Since the flow field is pretty
distorted non-parallel flow in the secondary in-
stability process, an analytical treatment of
an instability problem is often difficult. In
the present work, a global instability analy-
sis based on large scale numerical simulation is
employed. The mechanism of the non-uniform
concentration and resulting different temporal
growth rate of streamwise vortices in a braid
region in the secondary instability process is
discussed based on the stability analysis.

BASE FLOW

For the present global instability analysis,
temporally developing jet which is periodic in
axial direction is used as the baseflow. The
computational domain is a cylinder of an ax-
ial length ¢/D =27/5 and the radius R/D =6
where D is the diameter of the centerline of
a ring vortex. The axial length corresponds



to the most unstable wavenumber a = 5 of the
primary instability stage for the axi-symmetric
parallel flow of a round jet with uniform core
covered with boundary layer of momentum
thickness ©/D = 0.045 of its peripfery. At
the initial stage of the reproduction of a base-
flow, the parallel flow is excitated at the ax-
ial wavenumber o = 5 to accomodate a pair
of vortex rings in the computational domain.
In the calculation, the vortex ring does not
always stay at the edge of computational do-
main, but slowly moves to downstream at the
speed of the phase velocity of the most unstable
mode in the primary instability regime. The
grid number is (64,64,128) in axial(z),radial(r)
and circumferential(é) directions, respectively.
Reynolds number based on Uy, the core veloc-
ity and D is 25000.

CALCULATION METHOD

Suppose the baseflow u(v,p) where u and
p is velocity and pressure respectively, is
an N-dimensional vector which obeys the
Navier-Stokes equation du/dt = f, where N-
dimensional vector f contains convective, pres-
sure and viscous terms. A small disturbance
vector u/(v’,p’,t) superposed on the baseflow
follows the linearized N-S equation:

du’ of
ot o - Y
Assuming exponential growth of the perturba-

tion with time t as u’ =ue*, Eq.(1) is written
in the following form:

= Au’ where A =

Au = \u . (2)
which is an eigen equation.

On the other hand, time integration of
Eq.(1) from ¢ to t + T yields

a(v’,p',t+T) = B,u(v',p',t) where B, = eT .

(3)
where T is within the regime in which the base
flow grows linearly. By the theorem of Frobe-
nius concerning matricial polynomial, eigen-
values A\, \, of A, B, are connected with each
other by A\, =e*”. As the exponential trans-
formation (3) keeps the eigenvectors of A and
B, identical, Eq.(2) is transformed into

B,u = M\u where X\, =€ (4)
by time-integration. In 3-dimensional flow
analysis, the dimension N of A, B, and @ could
attain as huge as 10° ~ 107 corresponding to

the grid number, each of which has pressure
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and 3 components of velocities. As eigenvalue
problem of this huge size asymmetric matrix
is too big to solve directly as it is, an ap-
proximate but efficient method should be in-
troduced. The technique proposed by Eriksson
and Rizzi (1985) extended from the Arnoldi’s
method (Arnoldi, 1951) allows us to reduce
the size of matrix. The outline of the present
global instability analysis based on these tech-
niques is described briefly in the following.

Let Ex represent the vector space spanned
by whole eigenvectors of A, B, and let ¢; be
the normalized disturbance vector obtained by
an orthogonalization of B, (; to every ingredi-
ent of the set of vectors ¢y, --,¢;_;. M(MK
N) sets of these orthonormal vectors Vs =
{¢y,---,Cpr} constitute the orthonormal basis
in the subspace Ejs of En(Takeuchi, 2001),
which may allow us to approximate the eigen-
vector ¢ € FEp of A and B, as the linear
combination of ¢;’s as follows:

=2 +20+ - +2y,(u=Vu z (5)

where z={z1,--+,2,,}7 is the coefficient vec-
tor. Expecting that ¢ is close enough to the
correct eigenvector u in Eq.(4), approximate
eigenvalue )\, is obtained as the solution of

ViEB, Vi z = Myz, (where ViV = 1) (6)

where I is an unit matrix of dimension N.
As the matrix VAEBTVM is an M-dimensional
square matrix, Eq.(6) is much smaller in di-
mension than the original eigenvalue prob-
lem of Eq.(2) and (4). Then, A obtained by
inverse-transform of )\, by Eq.(4) and the cor-
responding vector Vasz represent the approxi-
mate eigenvalue and eigenvector of A, respec-
tively. Positive eigenvalues make the system
(1) temporally unstable.

Direct solution of Vi AV)s z= Az is also pos-
sible for eigensystem of A, in principle. How-
ever, solution of Eq.(6) achieves better accu-
racy at reduced dimension M (< N) for unsta-
ble modes which satisfy 0 <\ < Ay, particularly
as the magnitude of eigenvalue || increases
(Saad,1980 and Takeuchi,2001).

RESULTS

In this calculation, reduced dimension M for
the global instability analysis is 200, in place
of the original dimension of N = 2.5 x 10°
which is the number of grid points used for
flow simulation. Time interval T' in Eq.(3) is
5 in non-dimensional time which corresponds
to the time length for a vortex ring to ad-
vect about 2¢. As will be mentioned later,
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Figure 1: Eigenvalue X of the secondary instability arranged
in the descending order of Real[A], for M = 50(+), M =
200(0) and M = 300(s).

Table 1: Number of set of streamwise ribs of Fig.2 aligned in
the circumferential direction. Each set of ribs is composed
of a positive and a negative streamwise vortices.

Mode No. 01 04 08 11 24 34
Num. of ribs 4 5 6 7 13 18

unstable modes in the secondary instability
evolve linearly in this interval of T' in the cur-
rently assumed baseflow. Figure 1 shows the
magnitude of the real part of the eigenvalue
A. Three cases of M = 50,200 and 300 are
shown to demonstrate the accuracy. FEigen-
values are arranged in the descending order of
Real[A]. It is noted that analysis of the case
of M = 200 gives enough accurate solution
up to 79th largest eigenvalue in comparison
with M = 300 case. It is also found that no
dominant mode exist but amplification rates
of neighbouring modes are very close in mag-
nitude with each other. The magnitude of first
several modes are within 2.5% of the largest
one which is 0.73. Figure 2 shows examples of
the eigenvectors corresponding to several typ-
ical unstable modes, visualized by iso-surfaces
of positive streamwise vorticity |w| =4 (dark
iso-surface) along with the baseflow (bright iso-
surface). Modes’ ID number corresponds to
the order of Real[)] in Fig.1. Between neigh-
bouring positive streamwise vortices there is a
negative streamwise vortex which is similar in
shape to positive ones, though not shown in
the figure to simplify the visualization. In the
first mode (Mode01), four sets of streamwise
vortices bridge the outer edge of the upstream
vortex ring and inner edge of the downstream
one, spanning braid region. ~The number of
pairs of streamwise vortices of typical unstable
modes shown in Figs.2(a)~(f) are tabulated
in Tablel. According to Fig.1, correspond-
ing eigenvectors obtained at M =200 coincide
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(a)Mode01

(b)Mode04

(e)Mode24

Figure 2: Typical unstable perturbations represented by
iso-surface of positive streamwise vorticity(dark iso-surface)
together with the baseflow(bright iso-surface) as |w| = 4.

Figure 3: Contour of streamwise vorticity of Mode34. Solid
line : positive, Dotted line : negative.

with those obtained at M =300 within error of
1 x 107?, where the error between two eigen-

vectors s and t is defined by (1 — %-ﬂt—l). Vor-

tical structures of unstable modes in Figs.2 are
rotationally symmetric in the circumferential
direction except for Mode34 which is rotation-
ally asymmetric. Fig.3 shows the contour of
streamwise vorticity w, in the cross-section in
the braid of Mode34. Streamwise vorticity w,
is weakly varying in azimuthal direction and
its phase overturns in a half circle.

LINEARITY OF UNSTABLE MODES

To confirm linear bound of the temporal
development of perturbations in a braid re-
gion, the growth of the above-selected pertur-
bations in Fig.2 are calculated by superposing
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Figure 4: Temporal growth of unstable modes in Figs.2 su-
perposed on the baseflow.

the modes on the baseflow. Superposed mode
consists of pressure and 3 components of ve-
locity and the specified initial kinetic energy is
1.5 x 1073% of that of the base flow. Figure
4 shows temporal growth of the integrated ax-
ial vorticity I = [¢ |w,|dS measured in the mid
cross-section S between the neighbouring ring
vortices, where the section S is chased as the
vortex ring moves to axial direction, identify-
ing the point of slowest centerline velocity as
the detector.

Each mode grows linearly until it reaches the
break-up. The temporal growth rate given by
the gradient of each curve is same as Real[)]
in Fig.1, which confirms the accuracy of the
present global instability analysis. After the
secondary perturbation grows up to the thresh-
old of I ~ 2, the growth rate of each mode
changes. As will be mentioned later, chaotic
vortices look dominant in the flow field beyond
this threshold. The breakdown of the sec-
ondary stage indicated by crossing this thresh-
old is referred hereafter as the tertiary instabil-
ity. This threshold also corresponds to the up-
per bound of the secondary instability regime.
The onset of the break-up of the tertiary in-
stability is in the order of the magnitude of
eigenvalue, as expected.

In order to investigate the dependence of
temporal growth on initial intensity of unsta-
ble modes, similar simulations have been con-
ducted with different initial intensity of unsta-
ble modes. As a result, temporal growth rate
of I of each mode and the onset of the tertiary
instability are the same as in Fig.4. The prop-
erty of additivity of unstable modes has been
confirmed also by comparing the evolved per-
turbations started from sum of unstable modes
with that obtained by summing each indepen-
dently evolved perturbations. The evolution is
done within the linear bound and the differ-
ence between them is as small as 0.0006 in the
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Figure 5: Temporal evolution of the wavelet signals of
(a)Mode0Ol and (b)Mode34. Initial intensities are set to be
the same as that in Fig.4.

earlier mentioned definition of difference.
Consequently, unstable modes obtained by

the global instability analysis possess the lin-

earity in the secondary instability regime.

THE ANALYSIS OF NON-UNIFORMITY
IN UNSTABLE MODES

In this section, temporal evolution of vor-
tical structure of unstable modes is described.
For this, w, distribution is adopted as the in-
dicator. First, to see the difference between
the evolution of two basically different dis-
turbance modes, Mode0l and Mode 34 are
independently superposed on the base flow.
The former is the representative of rotation-
ally symmetric mode and the latter, that of
rotationally asymmetric one. Temporal evolu-
tion of each mode is analyzed. The wavelet
transform (Chui, 1992) is applied to stream-
wise vorticity w, on a circle of radius r=D/2 in
a cross-section S in a braid region which moves
to downstream as time goes on. The wavelet
transform is conducted by using the Morlet’s
wavelet as a mother wavelet in the azimuthal
direction.

The obtained time series of wavelet sig-
nal are depicted in three-dimensional man-
ner as Wyw,(m,#6,t) in Fig.5, ordinary two-
dimensional wavelet map of wavenumber(m) of
w, and azimuthal angle(f) are arranged along
t-axis. Figs.5(a),(b) are the 3-D wavelet maps
for Mode0O1 and 34 as in Fig.2, respectively.

The front-end of t-axis is at ¢ 17.5 in
both Fig.2(a) and (b), when small amplitude
disturbances are introduced. The timeseries
demonstrate temporal evolution of streamwise



vorticity from the very beginning to final stage
through the secondary up to the tertiary insta-
bility process at ¢t = 28.5 in (a) and ¢t = 24.0
in (b) respectively. The reason of lack of sig-
nals in the early stage of Mode34 is that the
wavelet signal is too small compared with that
in the final stage when it amplifies rapidly.
The first stage is characterized by the domi-
nant wavenumber of each disturbance mode,
m=4 and 18 for (a) and (b), respectively. How-
ever, no sooner than the stability phase tran-
sition occurs to the tertiary instability, com-
ponent of higher azimuthal wavenumber break
out abruptly. Even in the tertiary instability
regime, Mode01 keeps 7/2[rad] rotational sym-
metry in the circumferential direction. On the
other hand, the wavelet signal of Mode34 which
have non-uniform distribution of intensity be-
gins to merge into groups (at ¢t = 23) before
the apparent tertiary instability, and finally,
vortices are concentrated in 2 azimuthal areas
in the tertiary instability regime. Notable is
that rotationally asymmetric mode as Mode34
shows qualitatively different evolution, com-
pared with symmetric one.

Fourier analysis gives another aspect of this
local concentration found in Mode34. The
temporal development of typical azimuthal
Fourier modes of w, is shown in Fig.6 which are
measured on the circle of r=D/2 in the cross-
section S which moves to downstream as time
goes on. The wavenumber m = 1 which cor-
responds to the circumferential asymmetry of
Mode34 develops with second biggest spectrum
density after the fundamental one of m = 18.
This may be the key process how the mod-
ulation and the concentration of streamwise
vortices happens. Spectrum densities of other
Fourier modes increase abruptly at t = 23,
exactly the same moment when the wavelet sig-
nal begins to concentrate to 2 areas shown in
Fig.5(b). So, these modes are considered to be
the higher wavenumber components induced
by the infinitesimal distortion of the baseflow.
Inferring the linear bound of the secondary in-
stability of Mode34 on the basis of Fig.4, it
is at around ¢ = 26 since Mode34 is kept lin-
ear up to t~26. However, azimuthal Fourier
modes in Fig.6 suggests that the disturbance
already reached locally the linear bound of the
secondary instability at ¢~23.

The mechanism of the temporal develop-
ment of streamwise vortices is still unclear
beyond the tertiary instability. = However,
above results suggests that small local non-
uniformity induces local difference in recep-
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Figure 6: Temporal evolution of typical azimuthal Fourier
modes when Mode34 is applied at t=17.5.

tivity of disturbance and this different recep-
tivity amplifies successively at locally different
growth rate of disturbances.

Since not a small difference lying between
eigenvalues of Mode0l and 34, the mode of
largest growth rate might dominate in the sec-
ondary instability in a braid region. How-
ever, in both temporal and spatial evolution
of the secondary instability stage, local non-
uniformity along circumference is found and
disturbed field is assumed to be composed
of various modes which triggers manifestation
of non-linear interaction in early evolutional
stage. Mode34 is one of such modes. If stream-
wise vortices in the braid region were always
rotationally symmetric, it would be possible to
predict their development such as the distance
of virtual origin without big scatter. How-
ever, it is normal to assume that disturbances
contains modes which triggers non-linearity.
Then, even a small disturbance of this sort may
modulate the evolution process. So, it is intrin-
sically unavoidable to have scatter of evolution
speed of a round jet.

A BRAID REGION IN A SPATIALLY DE-
VELOPING JET

The unstable modes in a braid region of a
temporally developing jet have been described
in the last few sections. Now, it is intended
here to consider the streamwise vortical struc-
ture in the braid of a practical spatially de-
veloping jets (Takeuchi et al, 1999) to see
how above-mentioned secondary instability be-
haves.

In order to implement the role of unsta-
ble modes in spatial developing process, two-
dimensional velocity and pressure field in the
central cross-section of Mode34 in Fig.2(f) is
introduced as a typical unstable mode at the
nozzle exit. This disturbance is continuously
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Figure 7: Wavelet maps of w. in the spatially evolving jet,
measured at z = 4.8 in the braid region.

superposed on the mean velocity profile and
no other random disturbances are assumed,
to see the dependence of developed stream-
wise vortices in a cross section S on the mode
and its spatial development. In the present
simulation, the intensity of the supplied plane
disturbance is 0.0001U.

Fig.7 is the wavelet map of the distribu-
tion of w, along a circle of radius r = D/2
in the cross section at z = 4.8 after suffi-
cient time from the introduction of the plane
mode of Mode34. Near the band m = 18 in
Fig.7, there remains the wavelet signal which
probably comes from Mode34 superposed at
the nozzle exit, and in the higher band of
wavenumber space the strong signal concen-
trates in 3 or 4 azimuthal positions which is dif-
ferent from the temporal evolution of Mode34
demonstrated in Fig.5. The signal found in
the band m=4 ~ 6 may be the components of
more unstable modes, such as Mode01 and 04
in Fig.2, since they have the similar number
of streamwise structures in the circumferen-
tial direction. This indicates that the highly
unstable modes such as Mode01,02, etc., can
be introduced in a braid region by the feed-
back process from turbulent vortical structures
in the downstream chaotic region through the
pressure disturbance, even though an unstable
mode of smaller eigenvalue only is superposed
on the mean velocity at the nozzle exit. As
a result, the temporal increase of I measured
in a braid of a spatially evolving jet is as fast
as Mode01(Takeuchi, 2001), irrespective of the
mode specified at the nozzle exit.

Accordingly, above results suggests that the
secondary instability in a braid of a spatially
evolving jet is characterized by diversity of lo-
cal receptivity of disturbance, and the develop-
ment of disturbances in the braid region can be
attributed to the mechanism obtained by the
global instability analysis.

CONCLUSIONS

The early stage of transition to turbulence
of a round jet is investigated by analyzing
the evolution of disturbances in the braid re-
gion between two neighbouring vortex rings.
Global stability analysis and wavelet transform
enable us to understand the physics of the phe-
nomenon of the decay process of round jet.
Major conclusions are as follows.

1. Eigenvalues of secondary instability for the
braid region of a temporally developing jet
has no dominant mode.

2. These modes grows linearly in the linear
regime which is independent on the mode,
but the growth rate depends strongly on
the mode beyond the linear bound.

3. Mode having rotationally asymmetric
eigenvector plays crucial role to induce
three-dimensionality and accordingly non-
linearity of instability. This is reflected as
non-uniform receptivity of disturbances in
azimuthal direction.

4. In a practical spatially developing round
jet, azimuthal non-uniformity of growth of
disturbances characterizes the early stage
of randomization whose mechanism can be
attributed to that investigated in the tem-
porally developing jet.
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