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ABSTRACT

The objective has been to study turbulent
boundary layers under adverse pressure gradi-
ents (APG) through direct numerical simula-
tion (DNS). The numerical code is based on
a pseudo-spectral technique which is suitable
for the simple geometry (flat plate) consid-
ered here. Five large simulations have been
performed, ranging from a zero pressure gradi-
ent boundary layer to a separating flow. The
simulations have revealed many features of
APG turbulent boundary layers which are dif-
ficult to capture in experiments. Especially
the near-wall behavior has been investigated
thoroughly, both through the statistical and
instantaneous flow.

Theoretical work based on the turbulent
boundary layer equation has been conducted
with the aim to develop near-wall laws suit-
able for turbulence models. The conditions for
self-similarity and relations between mean flow
parameters have been reviewed and applied in
the DNS. The results from the simulations have
confirmed the theoretical part of this work.

This paper is based on a recent doctoral the-
sis (Skote, M., 2001).

INTRODUCTION

The turbulent boundary layer under an
APG is decelerated, which does not mean that
the turbulence intensity decreases. On the
contrary, the flow becomes even more unsta-
ble and the turbulence activity is enhanced.
The boundary layer also grows (thickens) more
rapidly under the influence of an APG. Since
the momentum of the fluid is lower close to the
wall than further up in the boundary layer, the
flow near the wall is more severely affected by
the pressure gradient. If the pressure gradi-
ent is strong enough, the flow close to the wall
separates, i.e. reversed flow appears.

The five simulated cases discussed in this
paper are denoted ZPG (zero pressure gradi-
ent), Al, A2, A3 (weak, moderate and strong
APG), and SEP (separated boundary layer).
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GENERAL FEATURES

In figure 1 the freestream velocity (U) for
all five simulations are shown. These profiles
constitute the boundary condition on the up-
per edge of the computational box and define
the APG. The resulting skin friction (Cy =
2(u,/U)?) of the four attached boundary layers
are shown in figure 2. As the APG is increased
the Cy is reduced. If the APG is strong enough
it induces separation (Cy < 0), which occurs
for the freestream distribution used in the case
SEP. The C; for SEP is shown in figure 3,
where also the C} distributions for previously
completed simulations of a separated turbulent
boundary layer are included. The two ear-
lier simulations were performed by Na & Moin
(1998) and Spalart & Coleman (1997). In fig-
ure 3 the z values have been recalculated in
our simulation coordinates. However, the rel-
ative starting positions of the boundary layers
cannot be calculated and are here matched by
letting the starting points of all three simula-
tions be located at x = 0. From figure 3 it
is clear that the separation bubble is longer
in the present simulation (case SEP) than in
the other two. In figure 3 the Cy from our
simulation has been calculated using the same
technique as in Na & Moin (1998) and Spalart
& Coleman (1997), i.e. with a value of unity
for the freestream velocity.

The streamwise velocity profile at z = 300 is
shown for the five cases in figure 4. The simu-
lations were performed with different heights of
the computational box, as seen in figure 4. The
heights in A3 and SEP were actually 65 but the
profiles are shown up to 45. The freestream ve-
locity is unity only for ZPG. The profile from
SEP exhibits negative values of the velocity
close to the wall, showing that separation has
occurred.

The streamwise velocity fluctuations form
elongated structures near the wall in a ZPG
boundary layer. It is generally thought that
the structures are weakened in an APG flow.
This is illustrated in figure 5, where the stream-
wise velocity fluctuations in a horizontal plane
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Figure 3: — Cy from SEP; - - C¢ from Na & Moin (1998);
.-+ Cy from Spalart & Coleman (1997).

Figure 4: Streamwise velocity profiles at z = 300. — ZPG;
--Al;--- A2; —. — A3; —-.— SEP.

from ZPG, A3 and SEP are shown. The figure
shows the whole computational boxes in the
spanwise direction and excluding the transi-
tional part and fringe region in the streamwise
direction. The dark color represents the low-
speed regions and light color represents the
area containing high-speed fluid. The streaks
formed in the ZPG case (figure 5a) are spaced
100 viscous units in the spanwise direction.
The streaks in the A3 case are shown in figure
5b. The structures are weakened at the end
of the domain as compared with those in the
beginning, showing the damping effect of the
APG on the structures. The spacing between
the structures increases from 100 (the same as
for a ZPG layer) at the beginning to about 130
at the end, based on the local u..

The SEP case is shown in figure 5¢c. There
are still some structures in the separated flow,
though not at all as long and frequent as in the
ZPG or A3. Before separation, which occurs

at approximately z = 142, the streaks are visi-
ble, but are rapidly vanishing in the beginning
of the separated region. There is notable in-
crease in the streak formation around z = 350,
where the friction coefficient is at its lowest
values, c.f. figure 3. Thus, there are indica-
tions that streaks may reappear in a separated
region if the back flow is severe enough. Af-
ter the reattachment at z = 412 the streaks
are not immediately appearing, but are clearly
visible after z = 450.
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Figure 5: Streamwise velocity fluctuations in a horizontal
plane at y*+ =10. (a) ZPG. (b) A3. (c) SEP. The points
denoted S and R represent the separation and reattachment
respectively.

SCALINGS AND SELF-SIMILARITY

In the outer part of a turbulent boundary
layer, the equation of motion can be reduced
to,

ou ou 1dP 0, ,,
—v— =S - ). (1
Yoz +v(9y p dx 8y<uv> (1)

The partial differential equation (1) is con-
verted to an ordinary differential equation
through the rescaling,
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(u~U)/u; = F(n), —(u'v') Ju,;? = R(n),
n=y/A(z), A =Ué"/ur. (2)

U is the freestream velocity, u, is the friction
velocity and ¢* is the displacement thickness.

The classical treatment of the equations
which involves outer and inner equations and
a matching of the solutions, leads to the loga-
rithmic friction law,

Ur 1
U~ C+llnRes’

(3)

where k is the Kdrmdn constant and Regs-
Ué*/v. Equation (3) shows that u,/U — 0 in
the limit of very high Reynolds number.

Letting u, /U — 0, an asymptotic version of
equation (1) is obtained.

A different approach to equation (1) is pre-
sented in Skote et al. (1998), in which the
asymptotic theory is substituted with an anal-
ysis permitting a finite ratio u,/U. Since the
logarithmic function grows very slowly when
the argument is large, a better assumption
than u,/U — 0 for moderately high Reynolds
numbers is that u,/U = constant. If u,/U
is regarded as constant and an outer length
scale varies linearly, the condition 3 =constant
is fulfilled if the freestream variation is of the
form U ~ z™, which was shown by Townsend
(1956) and Mellor & Gibson (1966). When
specifying a profile in a power-law form it can
be written,

U =Up(l - —)™ (4)
Lo

Utilizing these constraints, a non-linear equa-

tion is obtained. If now u,/U — 0, the asymp-

totic version is recovered and is written as,
Ié] dF  dR
Pemps- =52 )
m dn dn

In the inner part of the turbulent boundary

layer, the equation of motion can be reduced
to,

—2BF + —(1+m)

0%u 0
VoP oy (©)

Equation (6) can be integrated to give an
expression for the total shear stress,

3
7.+ =1+ (u_p> y+’
Ur

1dP

0=———
p dx

u'v').

(7)

with

1dP\1/3
(@)

Up

(8)
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The linear behavior of the total shear stress
revealed in equation (7) was first observed by
Stratford (1959a,b).

In the viscous sub-layer the Reynolds shear
stress approaches zero and equation (7) can be
integrated to give,

1 3
ut =yt + 5 (“_P) (y+)2.

Ur

(9)

This equation was first derived by Patel (1973),
and reduces to the usual linear profile in ZPG
case, when u, — 0.

The logarithmic expression for the velocity
profile in the intermediate layer can be ex-
tended for an APG case,

+
ut = l (lngﬁ —92In _—_\,1+/\y+1
K 2
42/ + Ayt — 1)) +B, (10)

(2
ur/)

A thorough derivation of equation (10)
is given in Skote & Henningson (2001).
Townsend (1961) and Mellor (1966) have de-
rived similar equations, albeit with different
methods and assumptions.

with

THE OUTER REGION OF THE BOUND-
ARY LAYER

Self-similarity

The simulations presented in Skote et al.
(1998) showed constant 3, see table 1. How-
ever, the functions F'(n) and R(n) are not self-
similar for low Reynolds numbers as shown
with DNS in Skote et al. (1998). For large
Reynolds numbers, the functions F(n) and
R(n) do become self-similar and converge to
the asymptotic equation given be equation (5),
as shown with turbulence models in Henkes
et al. (1997) and Henkes (1998).

The shapes of F'(n) from the simulations are
shown in figure 6. The [ parameter has a
strong influence on the profile shape for A3,
while the A1 and A2 profiles are closer to the
ZPG profile.

Mean flow parameters
If equation (5) is integrated, the relation

p
1+38

(11)



Figure 6: Velocity profiles at z = 300.
< A2; — . — A3.
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is obtained.
The non-linear equation can also be inte-
grated and yields the relation,

g

™= THTE A 2P

(12)

where H is the shape factor. The limit u,/U —
0, can now be obtained by letting H — 1, and
the relation (11) is recovered from (12).

To compare the relations (11) and (12), a
number of experiments and DNS are summa-
rized in table 1. There is obviously a much
better agreement with the non-linear theory,
showing that even in high Reynolds number
experiments, the asymptotic expressions are of
limited value.

The more rapidly U is decreased, the lower
Cy is obtained, as shown in figures 1 and 2.
While the relative difference in U between the
cases remains the same, a dramatic decrease in
C occurs between A2 and A3. In other words,
the closer to separation the boundary layer is,
the more sensitive on the freestream velocity
distribution it is. The relation between m and
[ should reveal this behavior. This is seen from
figure 7, where equation (12) has been plotted
for the two values of H, between which separa-
tion has been observed to occur. The limiting
value of m increases with H but is confined
between —0.22 and —0.25, which is consistent
with the observed values in experiments and
DNS. The rapid and strongly non-linear ap-
proach to separation (8 — o0) is consistent
with the strong decrease in Cy between A2 and
A3 in figure 2.
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Figure 7: 8 as a function of m from equation (12) for
— H=2.0 and - - H=2.5.
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relations

[ Case [ B8 [ H [ m [ (12 [ (D |
Al 0.24 | 1.60 [ -0.077 | -0.097 | -0.14
A2 0.65 | 1.63 | -0.15 -0.16 | -0.22
A3 4.5 1.97 | -0.23 -0.23 | -0.31

Bradshaw 1 0.9 1.4 -0.15 -0.20 | -0.24
Bradshaw 2 | 5.4 1.54 | -0.255 | -0.26 | -0.31
Skare & 20.0 2.0 -0.22 -0.24 | -0.33
Krogstad
Elsberry 25.0 | 245 | -0.22 -0.22 | -0.33
Stratford &) 2.5 -0.23 -0.22 | -0.33
Spalart & 1.8 1.65 | -0.21 -0.22 | -0.28
Leonard 8.0 1.92 | -0.23 -0.24 | -0.32
oo 2.3 -0.22 -0.23 -0.33
0.9 1.55 -0.18 -0.19 -0.24
5.4 1.86 -0.24 -0.24 -0.31

Table 1: Comparison of m from the non-linear/linear theory.
The data are taken from the following references (from top
to bottom) Skote et al. (1998), Skote & Henningson (2001),
Bradshaw (1967), Skare & Krogstad (1994), Elsberry et al.
(2000), Stratford (1959a), Spalart & Leonard (1987).

THE INNER PART OF THE BOUNDARY

LAYER

The viscous sub-layer

Profiles in the viscous scaling are compared
for the different APG cases in figure 8. All of
them matches closely the linear profile ut =
y*. Thus, even under strong APG the inclu-
sion of the pressure gradient term does not
seem to be of importance. However, close to
separation or reattachment, when wu, is small,
the velocity profile is strongly influenced by the
pressure gradient term. In figure 9, a velocity
profile from the SEP case (in the attached re-
gion) illustrates the importance of the pressure
gradient term.
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Figure 8: Velocity profiles at * = 300. — ZPG; - - Al;
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The overlap region

An example of comparison between DNS
data and equation (10) is shown in figure 10.
DNS data from the attached region (at z
450) of the case SEP is shown as a solid line
in figure 10. The dashed line is equation (10)
and the dotted line is the logarithmic law for
the ZPG boundary layer. The value of additive
constant is B = —2, which is in agreement with
the earlier investigation of the flow just up-
stream of separation in the simulation of Na &
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Figure 9: Velocity profile close to reattachment.
- equation (9); o ut =gy™T.

80

60

U+ 401

201

Figure 10: Velocity profiles from SEP: — DNS; - - equation

(10) for z = 450 and equation (16) for z = 150; --- ut =
6.‘15 Inyt +5.1.

Moin (1998), see Skote & Henningson (1999).

The value of the Kdrmén constant, , has
been set to 0.41 throughout this work. Lately,
Osterlund et al. (2000) have shown that the
value of the Kdrmdn constant actually is 0.38
for large enough Reynolds number. However,
Spalart (1988) has shown that the old value
of 0.41 gives good agreement for low Reynolds
numbers. In a number of earlier investigations
the influence of the Reynolds number on the
Karmén constant has been debated, see e.g.
Simpson (1970).

SEPARATION

In Skote & Henningson (2001), one of the
boundary layers was separated for a large por-
tion of the flow. The contours of mean stream-
wise velocity are shown in figure 11 with posi-

tive values shown as solid lines and negative as
dashed.

200. 400. 450. 500.

Figure 11: SEP: contours of mean velocity. Positive values
shown as solid lines, negative as dashed. Normal direction
stretched 20 %.

At the point of separation the wall shear
stress is zero, i.e. wu; = 0. Thus the scal-
ing with u, encounters a singularity. When
considering a strong APG or separation, the
singularity can be avoided by using the velocity
scale up instead of u,. This was noted by Strat-
ford (1959b), Townsend (1961) and Tennekes &
Lumley (1972). By rescaling equation (9) the

550.
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uP

Figure 12: Velocity profile close to reattachment. — SEP; o
u? = 3(yP)2.
2
following expression for the velocity profile in

the viscous sub-layer is obtained,

1 U 2
=§<yp>2+<ui> v ()
P

where y? = yu,/v. In the limit of separation,
when u, — 0, equation (13) reduces to

(14)

Thus, in this rescaled form, the singularity is
avoided. The profile from the SEP case at reat-
tachment is shown in figure 12 together with
the asymptotic expression (14). This is the
same velocity profile as was shown in figure 9.
Equation (10) can be rewritten in the pressure
gradient scaling for the overlap region, and the
resulting expression asymptotes to the square-
root law when u, — 0,

1
Up = 'K—;Z\/y_p‘FC,

which was first obtained by Stratford (19595).
The velocity profile in the overlap region be-
comes, in the separated region,

(15)

L1

=— |2 -1
[
—2arctan («/)\y*' — 1)} + B.

One of the profiles (at z = 150) from the
separated region is shown in figure 10 together
with the profile given by equation (16). The
additive constant is B = —7 for the separated
case. Observe that no part of the back-flow
region is shown in figure 10. The reader is
referred to Skote & Henningson (2001) for ve-
locity profiles in the back-flow region.

U

(16)
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