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ABSTRACT

Large Eddy Simulation of a semi-confined
impinging jet at Reynolds number 10000 was
performed. The impingement distance was
varied between 2 and 6 nozzle diameters.
The unsteady spatially filtered incompressible
Navier-Stokes equations were solved together
with a transport equation for the concentration
of an inert additive using a multi-grid finite
difference code with a staggered grid. The
un-resolved scales of the flow as well as the
sub-grid scale mixing were modelled implicitly
through the truncation errors of the discretisa-
tion. The transport of 4 passive scalars with
Schmidt numbers in the range 0.1 to 100 has
been studied. The results show differences in
mean concentration difference of up to 25%. As
expected, that the major differences in scalar
concentration occur where the velocity gradi-
ents are large, i.e. close to the nozzle and in
the wall jet region.

INTRODUCTION

The understanding of turbulent mixing is
important for many areas of application, such
as: combustion, chemical and biochemical pro-
cesses and medical applications. When sim-
ulating multi-species flows one often assumes
equal diffusivities, since this simplifies the cal-
culations and reduces the number of required
equations. The assumption is then the diffu-
sive effects will only be important for scales
close to the Batchelor scale and hence the
global effect will be negligible. However, this
theory is developed in analogy with the Kol-
mogorov hypotheses and therefore only valid
for very high Reynolds number, fully devel-
oped, isotropic turbulence. Unfortunately, in
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many practical applications this is not the case.
One such application is the impinging jet which
is used in many industrial applications where
mixing is of importance such as enhancing the
cooling and heating of surfaces, combustion
and mixing processes in chemical and biochem-
ical industry.

Several investigations of differential diffu-
sion, both experimental and numerical, have
been carried out in the past. Smith et al.
(1995) studied, using Raman scattering, the
non-reacting mixing of Hy and CO3 in a round
air jet. They observed differences in aver-
age concentration for Reynolds numbers up
to 1000. However, instantaneously the dif-
ferential diffusion was detectable up to Re =
64000. Lately, the differential diffusion at high
Schmidt numbers (1200 — 77000) far down-
stream in a in a low Reynolds number jet
was studied by Saylor and Sreenivasan (1998).
They found that the effects of different molecu-
lar diffusivities are active on scales much larger
than the Batchelor scale.

The aim of this work is to, by using LES,
investigate the effects of differences in molecu-
lar diffusivities in an impinging jet. The main
focus is on the mixing in the wall jet region and
the interaction with the coherent structures
originating from the shear layer instabilities at
the nozzle.

GOVERNING EQUATIONS

LES is based on spatial filtering of the equa-
tions of motion rather than time averaging
used in traditional turbulence modelling. The
space filtering of a function f;(z1,z2,z3,t) is



defined as
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where G(z1 — 2,29 — 5,3 — x4) is a filter
function.

The space filtered non-dimesionalized equa-
tions for the conservation of mass and momen-
tum for an incompressible Newtonian fluid can
be written, using summation convention, as
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where 7;; is the Sub Grid Scale (SGS) stress
tensor, which reflects the effect of the unre-
solved scales on the resolved scales. Since this
tensor contains correlations of unfiltered veloc-
ities which are not explicitly known it has to
be modelled. Usually the unresolved scales are
modelled using the resolved quantities. How-
ever, as a first approximation one may take
advantage of the properties of the numerical
schemes. In the computational code used the
convective terms are approximated by third
order upwind finite differences. The trunca-
tion error from this approximation acts dissi-
patively, at least in an averaged sense, draining
energy from the resolved scales. It has been
reported by Gullbrand et al. (1998) that the
energy flux caused by artificial (numerical) dis-
sipation also can allow for some back scatter.
Also, it has been shown by Olsson and Fuchs
(1994) for a free jet that this term is of the
same order and located in the same area as the
SGS-term in a Smagorinsky model. However,
it should be noted that for a given grid resolu-
tion the turbulent properties are improved by
using explicit SGS models, e.g. Revstedt et al.
(1998).

Passive Scalar Transport

For the concentration of an inert additive, c,
the filtered transport equation can be written
as
N R W N TV
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where Sc = v/D is the Schmidt number. The
factor v; in equation (5) is SGS mixing defined
as:

¥j =ujc - q;c (6)

The factor 9; has to be modelled since it too
contains correlations between non-filtered vari-
ables. The same approach as for the SGS
stress tensor has been applied, i.e. we use the
discretisation truncation errors (numerical dif-
fusion) to account for the SGS mixing.

NUMERICAL METHOD

The spatial discretisation of the governing
equations is performed on a Cartesian stag-
gered grid. The convective terms are discre-
tised using the third order upwind scheme by
Rai and Moin (1991). A fourth order central
difference scheme was used for all other term
(Olsson and Fuchs, 1998). Time integration is
done by a four step explicit Runge-Kutta type
scheme. A Poisson equation is solved for the
pressure correction. To accelerate the solution
of this equation a multi grid method is used.

The transport equation for concentration is
solved only on the finest multi-grid level by
using a converged velocity field. They are dis-
cretised using the same scheme as for the mo-
mentum equations. However, in order to avoid
unphysical oscillations in the solution the spa-
tial discretisation s switched to a lower order
scheme if the exceeds the limits of maximum
and minimum concentration.

Boundary conditions

No-slip conditions are set on all walls. At
the jet nozzle both the velocity and the con-
centration was set to a ”top-hat” profile. A
random perturbation of 5 % of the average inlet
velocity was superimposed on the nozzle veloc-
ity in all directions. At the outlet a Neumann
condition corrected to ensure global mass con-
servation was applied.

The concentration of the inert additive was
set to unity at the nozzle. On the wall and on
the outlet boundaries the normal derivative of
the concentration was set to zero.

COMPUTATIONAL SET-UP

The simulation were made on a semi con-
fined impinging jet as shown in Figure 1. The
impingement distance (Dy,,) is varied between
2 and 6 nozzle diameters (Dg). The number
of grid points for each impingement distance is
presented in Table 1. To achieve higher grid
resolution near the impingement wall and in
the shear layers of the round jet we use an-
alytical grid stretching functions also used by
Olsson and Fuchs (1998). The advantage of
using analytical functions is that exact expres-
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sions for the derivatives used in the coordi-
nate transformations can be calculated. Hence,
one avoids introducing further numerical errors
when evaluating the derivatives of the stretch-
ing.

Impingement distance  No. of nodes

2.0Dg 96 x 48 x 96
4.0Dgo 96 X 96 x 96
6.0Dg 96 x 144 x 96

Table 1: Grid sizes

Four Schmidt numbers are considered, 0.1,
1.0, 10.0 and 100. This includes the range of
Schmidt numbers one will find for the species
in combustion of gaseous hydrocarbon fuels
but also Schmidt numbers for larger molecules.
Following Bilger and Dibble (1982) one can
represent the difference in scalar transport us-
ing a mixture fraction (z). Due to the geome-
try and boundary conditions used here the this
mixture fraction simplifies to:

zij = ¢ — ¢; (7)

The cases considered in this work are listed in
Table 2

Case SC,‘ SCJ‘ 24]
1 0.1 1.0 212
2 1.0 10 223
3 10 100 234

Table 2: Schmidt number differences considered

The results will mainly be presented as time
averaged concentration difference (Z;;), the
rms. of concentration difference fluctuations
(2ijrms) and the difference in rms. of concen-
tration fluctuations (Acijrms = Ci;rms—Cjrms)-

RESULTS

The concentration differences occur mainly
in two areas. Close to the nozzle the differ-
ence is very large due to the strong, thin shear
layer. This initial difference is most proba-
bly responsible for the difference seen further
down stream in the free jet region. However,
the difference is smaller due to the increasing
mixing by the developing turbulence. As the
flow approaches the wall it is decelerated and
redirected. In the proximity of the stagnation
point one therefore again see differences due to
the deceleration.

Consider the concentration difference along
the developing round jet at /D = 0.5, i.e.
at the edge of the nozzle. As can be seen
from Figure 2 there is a significant difference
in mean concentration close to the nozzle. The
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difference is more pronounced for Case 1 how-
ever it is still clearly visible in Cases 2 and
3. This is an effect originating from the thin
shear layer developing between the jet and the
ambient fluid, i.e. low Schmidt number flu-
ids diffuse faster over the shear layer. Further
downstream the difference is decreased due to
turbulent mixing and for Cases 2 and 3 it al-
most disappears. One can also see that there
are no significant differences between the im-
pingement distances.

As the jet approaches the wall it is redi-
rected and a wall jet develops. Early stages of
this development can be seen in Figure 3 de-
picting average concentration and concentra-
tion fluctuations for S¢ = 0.1 and Dp,, = 4.0Dg
at several distances from the centre line. Close
to the centre line the concentration profiles are
much affected by the free jet. As the flow exits
the impingement zone (at about r/Dg = 1.2
(Nossier, 1985)) the high concentration will be
located closer to the wall and the maximum of
concentration fluctuations will be at about 0.1
nozzle diameters from the wall. It should be
noted that since Case 3 differs very little from
Case 2, we only discuss Cases 1 and 2 below.

Taking a closer look at the wall region (Fig-
ures 4, 5 and 6) we see that the mean difference
is is substantially larger for Case 1 than for
the other cases. As the flow develops down-
stream the difference becomes slightly more
pronounced. The same trend can be seen if
we instead consider the difference in rms of
concentration fluctuations. The fluctuations of
concentration difference (zrp,s) are somewhat
higher than the Also, the maximum value of
Zrms 18 much less affected by the Schmidt num-
ber, at least for the higher Schmidt numbers.
One can also observe a decreasing difference
in mean concentration and fluctuations with
increasing impingement distance. This is ex-
pected since as the impingement distance is
increased so is the turbulence level, which in
turn will increase the turbulent mixing in the
near wall region.

The probability density functions of zio
close to the wall (r/Dy = 0.03) are shown
in Figures 7, 8 and 9, for the three impinge-
ment distances, respectively. Considering the
shortest impingement distance one sees that
for the position closest to the jet centre line
(x/Dy = 1.0) it is evident that the distri-
bution is very narrow and noticeable is that
the peak value is not located at the average.
Hence the distribution is somewhat skewed.
As the jet develops the pdf will, as expected



be more Gaussian in shape. The same ten-
dency, however not as pronounced, is seen for
Dy = 4.0Dg, whereas for Dy, = 6.0Dg the
skewed shape of the pdf is not visible. We be-
lieve that this behaviour is related to the fact
that the coherent structures originating from
the shear layer instabilities of the free jet will
become less influential on the near wall mix-
ing as the impingement distance is increased.
However, further investigations are needed to
confirm this.

In RANS calculations it is common practice
to introduce a turbulent diffusion coefficient
(D¢) in analogy with the eddy viscosity. From
the LES data we estimate Dy in the wall nor-
mal direction from the following expression:

7e = D, 2 Q

ox
where v’ is the velocity fluctuation in the wall
normal direction and > denotes time averag-
ing. Here we estimate the turbulent Schmidt
number (Sc¢; = p¢/Dy) in the wall normal di-
rection. It is plotted for two radial locations in
Figure 10. Since we found no Schmidt number
dependence in this parameter we only present
the results for Sc = 0.1. Apart from some re-
gions where the concentration gradient is very
low, the turbulent Schmidt number has a value

of about 0.1 in the wall jet.

CONCLUSIONS

Large Eddy Simulation of mixing a semi-
confined impinging jet at Reynolds number
10000 was performed. The differences in scalar
transport for several molecular Schmidt num-
bers have been studied. It is shown that dif-
ferences are not detectable in an impinging jet
at the Reynolds number at hand, even at rela-
tively high Schmidt numbers.

The largest differences in mean concentra-
tion levels are found in two regions: in the
shear layer close to the nozzle and in the wall
jet close to the impingement wall. This is not
surprising since in these regions the concen-
tration gradients are high and the turbulence
intensity is low. Hence, molecular diffusion
plays an important role for the scalar trans-
port normal to the flow. The differences close
to the nozzle have a relatively large impact on
the concentration levels downstream in the free
jet. The concentration difference is decreased
by turbulent mixing and as the flow reaches
the wall it is substantially lower than at the
nozzle. One therefore might therefore assume
that the differences seen in the wall jet are only

the remains of the initial differences at the noz-
zle. However, since an increasing difference is
observed as the wall jet develops one can con-
clude that there is also some contributions to
the differential diffusion in the wall jet flow.
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Figure 1: Simulation geometry and coordinate system

Figure 4: Mean concentration difference (left), difference in
rms of concentration fluctuations (middle) and rms of con-
centration difference fluctuations (right) for Dpy = 2.0Dg
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Figure 2: Mean concentration difference

Figure 5: Mean concentration difference (left), difference in
rms of concentration fluctuations (middle) and rms of con-
centration difference fluctuations (right) for Dy = 4.0Dg
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Figure 3: Mean concentration and rms of concentration fluc-
tuations for Dy = 4.0Dg

Figure 6: Mean concentration difference (left), difference in
rms of concentration fluctuations (middle) and rms of con-
centration difference fluctuations (right) for Dy = 6.0Dg
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Figure 7: Probability density function for z12 at £ = 1.0Dg
(left) and « = 1.5Dg (right) for Dpw = 2.0Dg
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Figure 8: Probability density function for 212 at £ = 1.0Dg

Figure 10: Estimation of the turbulent Schmidt number at
(left) and « = 1.5Dq (right) for Dpw = 4.0Dp

z = 1.0Dg (left) and = = 1.5Dg
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Figure 9: Probability density function for z12 at £ = 1.0Dg

(left) and « = 1.5Dq (right) for Dpyw = 6.0Dg
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