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ABSTRACT

Experimental data on Reynolds stresses from
boundary layers is corrected for Reynolds number
effects and correlated as a Wake function. That is
the outer stress law minus the common part.

REVIEW OF MEAN VELOCITY PROFILE
LAWS

In this paper the two-layer structure of turbulent wall
layers is assumed. The transverse coordinate y is
measured from the lower wall and the half-height A
is the centerline where the velocity is Up.

Independent variables in the outer and inner
regions are
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Let the velocity profile be expanded in Poincaré
asymptotic expansions. with §,(Re«) and A (Re) as
gauge functions. For the inner region
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as Rex = oo
The function f5(y") is the law of the wall. It has been
experimentally determined that the same fy(y')
applies to pipe flow, channel flow, and boundary
layers.

For the outer region

%ﬂ =F(Y, Res) ~ Fo(Y) +_(Res) F1(Y)+...
0

as Rex
A little analysis (Tennekus and Lumley(1972),
u*
Panton (1995)) shows that A = T and that the first
0

term is Fp =1. From here on only the first order

terms will be retained. Thus, the outer profile can be
reorganized,
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Here F, is recognized as the defect law,
U(y)- Up
F,Y) =——

u*

Matching between the inner and outer layers requires
that

usk
F(Y =0)= 0 fly" = o)
(6]

u*

wk
= — +
1+ Uo F1 cp(Y) Uy fo cp™™)

This produces the overlap laws which are also called
the “common parts”
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In principle, constructing a composite expansion
forms an expression that is valid for all values of y.
An “additive composite” is the sum of the inner and
outer expansions minus the common part. For small
y the common part cancels the outer function and the
inner law gives the correct value. For large y the
common part cancels the inner function and the
outer is the correct answer. The composite mean
velocity is
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Coles defined the law of the wake W(Y) as
W)= F1(Y) —[i InY +Cq]

Thus, in the final composite expansion, W(Y) is the
outer relation that produces a uniformly valid
profile.

[{1* =fo(y") + W(Y) where Y =y" /Rex



This expression contains a Reynolds number
dependence implicitly. W(Y) is different for pipe
flow, channel flow, and boundary layers.

Asymptotic Theory for the Reynolds Stress

The formalism outlined above for the mean velocity
can also be applied to the Reynolds stress. Poincaré
expansions for the inner and outer regions are,

—uv /ux? = g (y+ Re*) ~ go(y") + ..
as Rex =

—uvius? =G (Y, Rex) ~ Go(Y) +...
as Rex =00

For channels and round pipes it is known that
Go(Y)=1-Y.

A differential equation for the inner region
connects gy and fj

dfy 1
dy+

+
g *+

Because f is the same for pipe flow, channel flow
and boundary layers, the equation above implies that
a single function for g, will be valid for all
situations.

Again, as in the case of the mean velocity,
matching produces the overlap laws and common
parts. There are simply

gyt o) _gepyH=1
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Following the pattern established for the mean
velocity, one can construct a composite expansion
useful for all y. The sum of inner and outer minus
the common part is

- uv /us? = go(y) + Go(Y) ~ Go_ep
= gy + Go(Y) - 1
where Y =yt / Rex

It is natural to define a law-of-the wake for the
Reynolds stress as

WuV(Y) _GO(Y) -1

~uvhs? = g(y)+ WaulY) (1)

Although Gy(Y) and W,, (Y) differ by only a
constant we will use the wake law in order to
emphasize that it is the complementary outer
function for the Reynolds stress. An important point
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is that W, (Y) is part of an expression that is valid
for all y and which displays the Reynolds number
dependence.

There is a connection between the mean velocity
profile and the Reynolds stress in the outer layer.

Tennekes and Lumley (1972) show that
W 3B it =2 @)
an an A

Recall that F; is the velocity defect law. In this
equation the symbol A is the Rotta-Clauser thickness
defined as

A=§"U,/u,.
For pipe and channel flows it is known from theory
that W,(Y) = =Y exactly. The correlation of W, (Y)
data for boundary layer is the subject of this paper.

Universal Inner Reynolds Stress Function

9o(y"

Subst)ituting with the known outer function for pipes
and channel flows, Go(Y)= 1 —y" /Res, into the
composite expansion, Eq. 1 above, and solving for
go(y") gives,

—
o w0 |y
goy") = 2 * Rex

This expression allows one to account for Reynolds
number effects on the Reynolds stress. It is valid for

pipe or channel flows. Experimental data for uv

/ux2 has been substituted into the expression above

to produce go(y"). Figure 1 shows channel flow
results and Fig. 2 pipe flow results. DNS data from
channel flow calculations are given in Fig. 3 and
data from channel flow calculations comprises Fig.
4,

On each figure a reference curve is given. The
reference curve has the equation

_2 2k 4 Al
8ot ™ arctan( p Y ) [1 —exp( o )]
This relation satisfies the known Taylor’s expansion

behavior of g, near the wall, g, ~ y3 as y= 0, ad

also satisfies the requirement gp ~ 1 — () as

y=> co. Two constants in the relation are K, the von
Kérman constant, and an arbitrary scale constant ct.
The correlation of this data is considered very

good. Even at some of the lowest Reynolds numbers
one cannot observe any systematic trends.

Reynolds Stress Wake Function for Zero-
Pressure-Gradient Boundary Layer

The theme of this paper is to apply a composite
expansion for the Reynolds stress to experimental



data. In this way one can take account of the
Reynolds number dependence (to first order). The
logic is as follows. W,,(Y) is known exactly for

pipe and channel flows, so the data for uv /u*? can

be used to determine go(y’). Since go(y") is
universal, it can be used to find W,,(Y) for a
boundary layer. Solving Eq. 1 for W,(Y) gives

Wa(Y) = _uv /ux2 _ g(y"=Y Rex) 3)

A curve fit 8, ref represents the universal go(y+)

function and experimental data for uv /u*? used.

Recently, there are two new data sets on boundary
layers. Data of Osterlund, and Johansson (2001)
from Kungl Tekniska Hogskolan (KTH) Stockholm,
and of Stanislas (2001) from Ecole Centrale de Lille
(ECL) are not yet published. Jens Osterlund and
Michel Stanislas kindly supplied prepublication
copies of their data. However, the authors have
noted that corrections for finite X-wire size and wall
interference effects have not been applied. In the
case of the French data the experimenters have
measured a very slight adverse slight pressure
gradient. Thus, the reader should view these results
as preliminary. The Lille X-wires were 2.5 micron
in diameter and 0.5 mm in length while the
Stockholm X-wires were 1.27 micron in diameter
and 0.3 mm in length. For the Stockholm data this
translates into wire length in inner variables of 6.6 <
L* < 24. These instruments represent the current
state of the art.

Processing the data in accordance with Eq. 2
yielded Figs. 5 and 6. Also shown on the figures is a
line marked "Coles." This line was obtained by
inserting Coles law-of-the-wake (including the
corner correction of Lewkowicz (1982)) into Eq. 3
and integrating.

The first observation is that accounting for Re*
effects by subtracting g, (see Eq. 3) does not
improve the correlation of the data. This effect is
most prominent near 1 = 0 chere the data still shows

a large scatter. It would appear that data closer to
the wall than the peak values are in error. Some of
the probe size and wall effect corrections are
obviously needed. For n > 0.025 each data set

collapses nicely for all Re* > 2500. However, the
sets are not in agreement. The KTH data tends to be
below the Coles line and the ECL data tends to be
above it. At the present time there is no explanation
for the differences.
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Figure 1. Inner Reynolds Stress Function:
Channel Flow Experiments
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Figure 2. Inner Reynolds Stress Function:
Channel Flow Direct Numerical Simulations
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Fig. 3 Inner Reynolds Stress Function:
Pipe Flow Experiments
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Fig. 4 Inner Reynolds Stress Function;
Pipe Flow, Direct Numerical Simulation
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Wake Law ~ - W uv

Wake Law ~ W uv

Reynolds Stress ; KTH Stockholm

120
1.00 P‘?“
S
oA ® Re*=1676
0.80 Py o 2002 N
Z
‘ol a 2310
0.60 bl —
: 7 X 2618
x A
4% x 2919
A
040 § T o 3497 N
T e
/J ?A A 4061
020 ey o 4609 B
A 5156
0.00 —
— w— Coles
-0.20
0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35
Wall Distance ~y / Delta_rc
Reynolds Stress ; Ecole Centrale de Lille
1.20 | |
& Re*=2550
1.00 — 00—
B Re*=3870 7  Bao
7
0.80 A Re*=5140 A ——a—o
0 Re*=7050 { .
0.60 = == Coles '/.ﬁ
. P rQ
F o 3>
0.40 X Lad
° omd [/
P
00 /
0.20 La >~
e
P ~
-~
0.00
-0.20

454





