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ABSTRACT

We investigate effects of a weak compress-
ibility on turbulence by means of vortex iden-
tification. A vortex identification scheme de-
veloped by Miura and Kida (1997), and Kida
and Miura(1998a) for an incompressible fluid is
extended to compressible fluids, to analyze sta-
tistical nature of vortices in compressible tur-
bulence. It is shown through this analysis that
a weak compressibility makes total volume of
vortex cores of compressible turbulence smaller
than that of incompressible turbulence. Radius
of vortices in compressible turbulence tends
to be smaller and less uniform than their in-
compressible counter parts. Relations between
our vortex analysis and previous investigations
for compressible homogeneous turbulence and
mixing layers are discussed.

INTRODUCTION

Vortex dynamics is one of the key issues to
understand physics of turbulence, whether a
fluid is compressible or incompressible. On one
hand, vortical structures and their dynamics in
turbulence have been investigated extensively
on incompressible fluids. One of a main diffi-
culty on vortex investigation is that there is not
sufficient consensus on an objective definition
of a vortex. In order to identify vortical struc-
tures in turbulence, several schemes or criteria
have been proposed. See a review by Kida and
Miura (1998b) and references therein on this
problem.

On the other hand, one of a main issues of a
compressible turbulence in the last decade has
been to clarify compressibility effects on tur-
bulence. Especially, a mechanism to suppress
growth rate of the kinetic energy in mixing lay-
ers or other sheared turbulence has been exten-
sively investigated. Sarkar(1995) has shown for
homogeneous shear turbulence that one of the
most important contributions of the compress-
ibility came from modification of rotational
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components of the velocity rather than from
dilatational terms. Vreman et al.(1996) have
also denied importance of dilatational terms
and shown importance of the pressure-strain
term in the evolution equation of the Reynolds
stress for a compressible mixing layer. Both of
them emphasized an importance of contribu-
tions of rotational components of the velocity
to the suppression of the growth rate of the
kinetic energy through Reynolds stress tensor.

While compressibility effects have been in-
vestigate from a point of view of the kinetic
energy growth, detailed physical mechanism on
the point how the compressibility changes the
rotational component of the velocity remains
unclarified. In this article, we aim to inves-
tigate this problem from a point of view of
vortex dynamics. Comprehending how vortex
structures and their dynamics in turbulence
are modified by the compressibility should con-
tribute to understand compressible turbulence.
We focus on tubular vortices in an isotropic
compressible turbulence and study effects of a
weak compressibility on vortices by means of
numerical simulations and a vortex identifica-
tion scheme.

NUMERICAL SIMULATIONS

Basic equations and initial conditions

Motions of an incompressible fluid with the
unit density is described by the continuity
equation

ou;
and the Navier-Stokes equation
ou; _ . ou; Op 1 0%y
ot J dz; Ox; RegOz;0z;
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We take a sum from 1 to 3 over repeated suf-



fices. Motions of a compressible fluid is de-
scribed by a set of equations
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where p, p, T and Er represents the den-
sity, pressure, temperature and total energy,
respectively. The symbol u; represents the i-th
component of the velocity vector and S;; rep-
resents (¢,j) component of the rate-of-strain
tensor Sj; = 1 (dui/8z;+ Ouj/dz;). Control
parameters Reg, Prg and My are the Reynolds
number, Prandtl number and Mach number,
respectively.

In order to compare behaviors of the fluid
governed by these two sets of equations, we
adopt two conditions as follows:

1. The same Reynolds number Reg is adopted
for both compressible and incompressible
Navier-Stokes equations.

. The rotational components of the velocity
are the same in these two sets of equations
at the initial time.

Then behaviors of these two sets of equations
should be similar each other at an initial stage
of simulations. Deviations of compressible so-
lution from incompressible one is considered
to come from either explicit or implicit com-
pressible effects. Furthermore, if we adopt an
uniform initial density p = 1 and initial pres-
sure fluctuation obtained by solving the Pois-
son equation

9* (ufujf)
(9%‘31‘]‘

b
Oz;0z;

(8)

N3 Reo | MZ | Pro v
-1 | 256% | 500 - - -
C-1 | 256% | 500 | 2.0 | 0.70 | 1.4
-2 | 256% | 1000 | - - -
C-2 | 2563 | 1000 | 2.0 | 0.70 | 1.4

Table 1: Resolution and parameters of compressible and in-
compressible simulations.

effects of variable density for compressible sim-
ulations become quite small. The quantity

p is often called “incompressible pressure”.
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(See Elrebacher et al.(1990), for example.) In
eq.(8), the superscript I represents the rota-
tional components of the velocity.

In order to make this comparison, we exe-
cute four simulations of decaying isotropic tur-
bulence whose initial conditions are described
as follows.

1. The rotational components of the velocity
field are given by a fixed energy spectrum
E(k) oc (k/ko)*exp[-2(k/ko)?] (ko
4) and randomized phases. Compressible
components of the velocity is null first.

. The initial density of compressible simula-
tions is unity.

. The initial pressure fluctuation of com-
pressible simulations is given by eq.(8).

Control parameters and resolution of the sim-
ulations are shown in Table 1. The symbols C
and I represents compressible and incompress-
ible runs, respectively.

In all of our simulations, triply-periodic
boundary condition on a 27 X 27 X 27 cube
are imposed. We adopt the pseudo-spectral
method and the Runge-Kutta-Gill scheme to
solve the two systems (1)-(2) and (3)-(7). The
aliasing errors are removed by the truncation
procedure.

Vortex identification

Before looking closely into numerical results,
we quickly review how to identify tubular vor-
tices in turbulence, and describe how to apply
the scheme to compressible turbulence. The
scheme we exploit here is described in Miura
and Kida (1997), and Kida and Miura (1998a,
1998b) for incompressible turbulence.

First, we assume that a fluid is incompress-
ible. The inertia which works to a fluid can be
written as

ou; oP 0Qx
“ou = Tom e, O

u; x; z;
where the first and the second terms in the
right-hand side of this equation represent po-
tential components and torque of the inertia.

+ €5k



The quantity P coincides with the pressure if a
fluid is incompressible and the periodic bound-
ary condition is imposed to the all directions.
Note that the potential P never coincides with
the pressure when a fluid is compressible, or
a boundary condition is not appropriate even
when it is a incompressible fluid.

We make use of a fact that a two-
dimensional well of the potential P is tends
to be formed in order to balance with the cen-
trifugal force of a swirling motion of a vortex.
We represent the eigenvalues of the Hessian of
the potential P by A\() (i =1,2,3),

A1) > 22 > 2\6) (10)

If two eigenvalues are positive, the potential P
has a two-dimensional local minimum on the
plane perpendicular to the normal vector e®),
which is the eigenvector associated with the
eigenvalue \(3),

By calculating eigenvalues of the Hessian of
P over all of the grid points of a simulation box,
we obtain a set of candidate points to construct
central axes of vortices. However, existence of
sectional minimum of P does not necessarily
imply existence of swirling motions on these
candidate points. In order to remove points
without swirling motions, we impose a swirl
condition as follows. Suppose that (Xi, X3) is
a local, two-dimensional Cartesian coordinate
whose directions are determined by two eigen-
vectors e(!) and e(?). A candidate of vortex
axes is located at the center of this coordinate
system. We project three-dimensional velocity
relative to the origin of this coordinate system
on this plane and linearize it as

] = D w2 ] =23
V2 W21 Wzg X2 X2

where V; is the i-th component of the projected
velocity field and W;; is the (7,7) component
of the rate-of-strain tensor on this coordinate
system. When the matrix A has the complex
eigenvalues, streamlines of the projected veloc-
ity field are spiral. It is simply represented by
the negative value of the discriminant D of the
eigen-equation:

D = (Wyy — Wog)? +4W1,Wo <0 (12)

We impose this condition to all of the candi-
dates of vortex axes and discards them if the
swirl condition is not satisfied. At last, we con-
nect the candidates which have survived the
examination by the swirling condition, to con-
struct swirling axes of vortices. Vortex cores

(11)
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are defined here as regions where the swirling
condition D < 0 is satisfied around vortex
axes.

Swirling axes of vortices in compressible tur-
bulence can be constructed by the process de-
scribed above. However, we modify the scheme
here. In stead of using the velocity in com-
pressible turbulence, we make the Helmholtz
decomposition of the velocity and adopt the
rotational component. As far as the com-
pressibility is quite weak, the original scheme
and modified one give almost the same results.
However, they give different results when the
compressibility becomes stronger. We should
be careful to choose which approach to be
adopted in view of what we aim to analyze.
Now we adopt the latter approach because we
are going to investigate change of the rota-
tional components of velocity by a compress-
ibility effects.

WEAKLY COMPRESSIBLE TURBULENCE

Here we compare numerical results obtained
by the simulations C-1, C-2, I-1 and I-2.

Time evolution of the kinetic energy per
unit density <%uzuz> are shown in Fig.1. Here

the bracket () represents the volume average.
Black diamonds and black boxes represent the
kinetic energy of C-1 and C-2, respectively,
while the kinetic energies of I-1 and I-2 are
represented by dotted and solid lines, respec-
tively. As far as we do not write explicitly, the
symbols and lines are used in the same manner
with Fig.1 in figures shown later.

Since the compressibility is quite weak in
the runs C-1 and C-2, their kinetic energies
are almost the same with I-1 and I-2, respec-
tively. Recall that one of a central topic of
a compressible turbulence has been to clarify
the reduction mechanism of the growth rate of
the kinetic energy. Although the kinetic energy
of a compressible isotropic turbulence tends to
be smaller than its incompressible counter part
when the compressibility is stronger, it is not
the case.

Time evolution of the enstrophy is shown
in Fig.2. The enstrophy of C-1 is almost the
same with that of I-1. However, The enstrophy
of C-2 grows and decays faster than that of I-2.
It means that small scale structures are more
energetic in C-2 than in I-2 simulation.

In Fig.3(a) and (b), vortex axes identified in
simulations C-2 and I-2 identified are shown,
respectively, at ¢ ~ 3. It is a time when en-
strophy of these two runs are going to take
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Figure 1: Time evolution of the kinetic energy per unit mass.
Black diamonds and black boxes represent the kinetic energy
of C-1 and C-2, respectively. The kinetic energies of I-1 and
I-2 are represented by dotted and solid lines, respectively.
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Figure 2: Time evolution of the enstrophy.

their maximum values and new axes are ac-
‘tively generated. The size of regions shown in
Figs.3 are 128 x 128 x 128 grid points out of
entire 256 x 256 x 256 grid points. When we
observe relatively long vortex axes in Fig.3(a),
we are able to find its counter part in Fig.3(b)
and vice versa. However, there are many pieces
of vortex axes in Fig.3(a) which are relatively
short and we are often fail to find their counter
parts in Fig.3(b).

In Fig.4, total length of vortex axes are
shown. Difference of the length between C-
1 and I-1, C-2 and I-2 respectively, are very
small. While there are much more number
of vortex axes observed in Fig.3(a) than in
Fig.3(b), total length of vortex axes in these
two simulations are comparable. One possi-
ble scenario to achieve this is that some of
compressible vortex axes are torn off (presum-
ably by a compressibility effect) in the course
of their time evolution and advected to other
places. Although we need to track several vor-
tices in time direction in order to verify this
scenario, it goes over a scope of this article.

Total volume of vortex cores are shown in
Fig.5. It is seen that total volume of vortex
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Figure 3: Vortex axes identified for (a)run C-2 and (b)I-2.
Number of grid points of these figures are 128 x 128 x 128
out of 256 X 256 X 256 entire system.

cores in compressible turbulence tends to be
smaller than incompressible ones. Since the
total length of vortex axes are almost the same
between C-2 and I-2, it suggests that the vortex
axes in C-2 are much more slender than those
in [-2.

In order to compare thickness of vortices
in compressible and incompressible turbulence,
we make use of the virtual radius R which was
defined by Kida and Miura(1998a). It is the
mean distance of the outermost enclosure of a
vortex core from the center of gravity of the
vortex cross section associated with the vor-
tex core. The probability density functions
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Figure 5: Ratio of volume occupied by vortex cores to the
entire region.

(pdfs) of the virtual radius R of vortices for
the runs C-2 and I-2 are shown in Fig.6. It
is clearly seen that vortex cores tends to have
larger R in I-2 than in C-2. Since the Kol-
mogorov’s length scale [k is about 0.015 at
this time for I-2, the peak of these pdfs are
located at R ~ 6.5 l[x. However, the peak the
pdf shifts toward smaller R in a course of time
evolution, to be locate at around R ~ 4 I,
which is consistent with the pdf shown in Kida
and Miura(1998a).

Typical vortex cores in runs C-2 and [-2 are
shown in Fig.7(a) and (b), respectively. Thick-
ness of vortex cores in Fig.7(a) vary from lower
side to upper side, having non-uniform struc-
tures. On the other hand, vortex cores in
Fig.7(b) look slender, having almost uniform
thickness. The upper parts of vortex cores in
Fig.7(a) is quite thinner than those in Fig.7(b),
while lower part are quite thicker. Thus, we are
not able to assert simply that vortex cores in
compressible turbulence is thinner or thicker
than those in incompressible turbulence. Our
observation shows that a characteristic of com-
pressible vortices is a non-uniformity of vortex
thickness. Furthermore, the top part of vortex
cores in Fig.7(a) is completely separated from
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the main body of these vortex cores. It sup-
ports the deduction that the vortex axes are
torn off and advected away, without changing
total length of vortex axes.
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Figure 6: Probability distribution functions of the virtual
radius R of vortex cores in C-2 (solid lines) and I-2 (dashed
lines).

(b)

Figure 7: Typical vortex cores obtained by runs (a)C-2 and
(b)I-2.

CONCLUDING REMARKS

We have conducted simulations of compress-
ible and incompressible isotropic turbulence
with the same initial velocity field and the
same Reynolds number. In our compressible
simulations, the kinetic energy per unit den-
sity was almost the same between compressible

and incompressible turbulence. There was no

obvious compressibility effect such as a sup-
pression of growth rate of the kinetic energy,
which is often observed in homogeneous shear
flows and mixing layers. A small difference
between compressible and incompressible sim-
ulation was observed in the time evolution of
enstrophy. These facts implies that compress-
ibility effects are quite weak in our simulations,
to be observed only in small scale structures.
We have identified vortex axes and cores in
compressible and incompressible turbulence, to



compare their statistical natures. It was ob-
served that compressible vortices have smaller
total volume, smaller mean radius of than in-
compressible vortices though total length of
vortex axes are almost the same between com-
pressible and incompressible simulations. Fur-
thermore, thickness of vortex structures in
compressible turbulence were less uniform than
those in incompressible turbulence. We would
like to emphasize that vortex structures are
strongly coupled with behaviors of Reynolds
stress tensor, by definition. In this articles,
we investigated vortex structures by using the
rotational components of the velocity. Thus
these vortex structures are good representa-
tives of compressibility effects which were in-
vestigated by Sarkar(1995) and Vreman et
al.(1996). It should be noteworthy that clear
differences were observed between vortex struc-
tures in compressible and incompressible tur-
bulence even when the compressibility was so
weak. We deduce that a modification of vortex
structures by the compressibility contributes to
suppression of the kinetic energy observed in
homogeneous shear turbulence or mixing lay-
ers. In order to clarify this modification mech-
anism, we should track time evolution of single
vortex structure and various physical quanti-
ties such as strain-rate-tensor, dilatation and
so on which are considered to affect it. Results
of analysis of time evolution should be reported
in our next article.
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