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ABSTRACT

A boundary-layer flow along a bump is in-
vestigated numerically. At the rear of the
bump the flow separates and the separa-
tion bubble becomes unstable above a critical
Reynolds number. The resulting vortex shed-
ding is reproduced numerically. Performing a
local linear stability analysis of velocity profiles
inside the separation bubble, it is shown that
there is a relationship between a local absolute
instability and the numerically observed global
flow behaviour. First numerical experiments of
flow control, reducing the recirculation length
using blowing and suction, are performed as
well.

INTRODUCTION

Laminar separating flow occurs in many en-
gineering applications such as turbomachinery
flow or in low-Reynolds number aerodynam-
ics. Flow separation is synonymous with loss
of performance such as increase in drag or for
instance loss of lift on airfoils at angles of at-
tack close to stall values.

Hence, the prediction (and prevention) of
flow separation is a field of active research in
fluid dynamics. Flow separation appears in the
presence of adverse pressure gradients. One
prototype geometry for separating flow is the
backward facing step and for instance Kaikt-
sis et al (1996) have performed an exhaustive
analysis of the stability of separation bubbles
for this flow geometry. One has to make a dis-
tinction between geometry induced separation,
and separation on smooth surfaces induced by
adverse pressure gradients. In the numerical
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investigations of Pauley et al. (1994), among
others, an adverse pressure gradient is pro-
duced by suction through the upper boundary.
In recent experiments on laminar separation
bubbles (Higgmark et al (2001)), the adverse
pressure gradient is imposed on the boundary-
layer flow along the plate by an opposite con-
toured wall with suction.

In the present investigation separating flow
is induced by a smooth bump mounted on a
flat plate. The flow transits continuously from
a favourable to an adverse pressure gradient
leading to separation at the rear of the bump.
Note that the geometry of the bump has orig-
inally been designed for turbulent flow mea-
surements (Bernard et al (2001)). We briefly
summarize in the next Section the numerical
solution procedure used to accurately describe
the separating steady and unsteady flow. It
is then shown that above a critical Reynolds
number self-sustained vortex shedding occurs.
For the steady state just below the critical
global Reynolds number the streamwise veloc-
ity profiles are analysed with respect to the
local linear stability behaviour. It is shown
that there is a transition from local convec-
tive to local linear absolute instability, which
lends some credit to the idea that the global
unsteady and nonlinear behaviour is triggered
by a local (linear) absolute instability. Finally,
we apply a instantaneous suboptimal control
strategy (Choi et al (1999)) to illustrate the
possibility of reducing the length of the recir-
culation zone by blowing and suction at the
summit of the bump.



GEOMETRY AND NUMERICAL SOLU-
TION PROCEDURE

The two-dimensional Navier-Stokes system
is made dimensionless using the displacement
thickness at inflow as reference length, the flow
velocity at infinity being the reference velocity.
The flow domain is z} < z* <z} , n*(z*) <
y* < oo, with n*(z*) the lower boundary con-
taining the bump (cf. Figure 1). The flow
geometry is transformed into a Cartesian one
using the mapping

(1)

(the barred coordinates being the physical
ones). The gradient, Laplacian and the curl
operator now write

V=V+Gy A=A+1L,
Vx(Vx@)=Vx(Vxad)+EB,(@) (2
with
o on 0
Gn - ‘% _(9—"1;,0)7
0’y 0 on 0? on ., 62
Ly=—-355-—25- +(52) 530
0z? Oy Oz 0z0y "0zr’ Oy
S ond*v On %u
Ro(@) = (— 2 59, — Ly). (3)

oz y2’ Oz Oy

The system to be solved in the computational
coordinates (z,y) is ‘
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in the transformed geometry z, < z <
Zp , 0 < y < oo (in the wall-normal y di-
rection an algebraic mapping transforms the
unbounded domain into a finite one). Fourth-
order finite differences are used in the stream-
wise z-direction whereas the wall-normal direc-
tion is discretized using Chebyshev-collocation.
Second-order backward Euler differencing is
used in time: the Cartesian part of the dif-
fusion term is taken implicitly whereas the
nonlinear and metric terms are evaluated us-
ing an explicit second-order Adams-Bashforth
scheme. In order to ensure a divergence free
velocity field a fractional time-step procedure
is used (Marquillie and Ehrenstein (2001)). At
inflow, a Blasius profil is prescribed whereas at
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outflow we use the advection condition
ou ou
Ly =
ot + “oz
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Yy Jo

which proved to be appropriate to evacuate the
vortex structures without reflection for conve-
nient convection velocities U,.

=0,

U, (6)
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Figure 1: Geometry of the bump; —: h = 2, aspect ratio
L./h = 10.

RESULTS

In all the forthcoming simulation results a
bump with height h = 2 has been considered,
for a aspect ratio (length versus height) of 10.
The streamwise direction (of length 200) has
been discretized using a grid with 1000 points
whereas 92 collocation points have been con-
sidered in the wall-normal direction.

Global computations

The flow is characterized by a separation
bubble at the rear of the bump the size of
which increasing with the inflow Reynolds
nuinber (Marquillie and Ehrenstein (2001)).
One steady state for an inflow Reynolds num-
ber of Re = 600 is shown in Figure 2 (note
that the Reynolds number based on the bump
height h = 2 is Re = 1200). Our numeri-
cal experiments have shown that this Reynolds
number is nearby criticality. Indeed, increas-
ing the Reynolds number to 650 the flow be-
comes definitely unstable (without injecting
any controlled perturbation) as can be seen
in Figure 3, where successive instantaneous
streamlines are shown exhibiting vortex shed-
ding. The vortex-shedding hence results from
a self-induced instability mechanism and one
may wonder whether there is a connection with
a local lincar absolute instability behaviour.

Local linear stability analysis

Extracting the local streamwise velocity
profiles U(y) from the last stable state we have
recovered at Re = 600, a conventional linear
stability analysis for the parallel flow (U(y),0)
using normal modes
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Figure 2: Instantaneous streamlines, 0 < x < 150, for the
steady state at Re = 600.
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has been performed, solving numerically the
eigenvalue problem for the dispersion relation
D(w,a) = 0. A spatio-temporal analysis has
been performed determining alternatively w(c)
as well as a(w) for both complex wavenumbers
«a and frequencies w. Computing the spatial
branches for the Laplace contours w; = cte
(with w = wy +1w;), absolute instability occurs
if two branches o™ (w), o™ (w) (initially located
at opposite sides of the real axis in the complex
wavenumber plane) coalesce for w; > 0, when
lowering the Laplace contour. At the point
of coalescence D(ag,wp) = 0, %g(ao,wo) =0

p=py
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Figure 3: Successive instantaneous streamlines, unsteady
flow at Re = 650.

or equivalently g—‘&’(ag) = 0 (Huerre et Monke-
witz, (1990)). '

For a locally absolutely unstable flow one
would hardly be capable of retrieving a steady
state for the global flow by numerical simula-
tion. Analysing the flow profiles (for the last
steady state at Re = 600) inside the recircula-
tion bubble for different z-locations, it appears
that the profile at = 35 (the summit of the
bump being located at © = 25) is that for
which pinching occurs for a Laplace contour
the closest to the real axis (though still for
w; < 0). The pinching process for the spatial
branches is shown in Figure 4. Comparing pro-
files at Re = 550 with the corresponding profile
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Figure 4: Laplace contours w; = cte in the plane (ar,;), in
the vicinity of the pinch point: oo : w; = —0.03; XX : w; =
—0.038; ++ : w; = —0.05 .
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Figure 5: Profiles U(y) extrapolated from profile at Re =

600 : ---, to: — absolutely unstable profile."
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Figure 6: a; = cte contours in the plane (wy,w;) : 00 1 q; =
O;+++:a; =—-05—-—:a; =—-0.7---a; = 0.8 —:
a; = —0.88 (cusp).

at Re = 600, a simple extrapolation process
(by adding the difference) has been performed
leading to a profile which is indeed absolutely
unstable, depicted as the solid line in Figure
5. Indeed, the a; = cte - contours in the com-
plex frequency plane shown in Figure 6 exhibit
a cusp at a; = —0.88, that is at that point
Ow/da = 0 which is the condition for abso-
lute instability. Note that the corresponding
velocity profile is close to the profile coming
out of the numerical simulation inside the re-
circulation bubble at Re = 600, depicted as
the dotted line in Figure 5. The reverse flow
does not exceed 5 per cent put extends up to
a height of y = 2. '
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Instantaneous control strategy by blowing-
suction
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Figure 7: Time history of the blowing-suction amplitude ¢
for the controlled flow at Re = 500.

In a first attempt to apply optimal control
strategy to the flow under consideration, we
apply blowing-suction at the summit of the
bump via the boundary condition @, = 0.
For this purpose we use the methodology based
on the Lagrangian functional (see Choi et al
(1999) for a recent application to separating
flow control), that is we solve the adjoint sys-
tem

L9 Sy — @%)i— Y
"o (@
1
AT =
i 0 (8)
V.i=0 (9)

(¥ being the adjoint velocity field and 7 the ad-
joint pressure) together with the Navier-Stokes
equations. Here we prescribe the local blowing-
suction profile (a polynomial graph ensuring
net mass at the boundary), the amplitude ®
being the unknown.. The objective function

to minimize is F (@) = [p, (g—;‘ (%’; - g—Z )) ds

(in order to locate the reattachment point in
the vicinity of I';). As an example we con-
sider a steady state at Re = 500, the recir-
culation length in that case being 80. For
this first numerical experiment we attempt to
locate the reattachment point for the recir-
culation length to be 30. Instantaneous con-
trol strategy has been applied: for a given
blowing-suction, the Navier-Stokes system is
advanced one time-step, the adjoint system is
computed backward and a new amplitude of
blowing-suction is computed performing one
gradient step ®*+1 = &% — o VJ(®*), J being
the functional to minimize (containing the ob-
jective and the cost of blowing-suction). The
resulting amplitude is shown in Figure 7: due
to the instantaneous control procedure, us-
ing a constant a-value in the gradient algo-
rithm, the blowing-suction amplitude oscillates




almost periodically. The corresponding instan-
taneous streamlines are depicted in Figure 8.
The recirculation bubble is indeed reduced but
due to the oscillatory blowing-suction unsteady
(but more organized than in the uncontrolled
case) vortex shedding occurs.

Figure 8: Instantaneous streamlines of the flow at Re == 500,
in the domain 5 < z < 120 for the controlled case.

CONCLUDING REMARKS

Recent investigations have been concerned
with the construction of profiles characteriz-
ing separating boundary-layer flow (Hammond
and Redekopp (1998), Alam and Sandham
(2000)), focusing on a possible absolute in-
stability behaviour. The present investiga-
tion reinforces the idea that indeed local, lin-
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early absolutely unstable profiles are present in
marginally unstable separating boundary lay-
ers and that the local instability behaviour is
responsable for the global instability. One may
expect that optimal control strategies could be
applied to prevent the global instability or at
least to organize the time-dependent flow.
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