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ABSTRACT

Large eddy simulations of the flow between
a rotating and a stationary disk have been
performed using a dynamic and a mixed dy-
namic subgrid-scale model. The simulations
were compared to direct numerical simula-
tion results. The mixed dynamic model gave
better overall predictions than the dynamic
model. Modifications of the mean flow three-
dimensionality on the near-wall structures were
also investigated. Conditional averages near
strong stress-producing events led to the same
conclusions regarding these modifications as
studies of the flow generated by direct numer-
ical simulation.

INTRODUCTION

A three-dimensional turbulent boundary
layer (3DTBL) is a wall-bounded flow where
the direction of the mean velocity varies with
the distance from the wall. Although the tur-
bulence statistics and structure are similar for
3D and 2D boundary layers, there are some
well-known differences: The vector formed by
the turbulence stress is not aligned with the
mean strain rate in a 3DTBL, and the turbu-
lence stress/intensity ratio is reduced in 3DT-
BLs as compared to 2D boundary layers; see
e.g. Durbin (1993), Eaton (1995) and Johnston
& Flack (1996).

In most 3DTBLs studied, the cause of the
three-dimensionality is a sudden spatial or
temporal change in the flow conditions. In
contrast, the flow between a rotating and a
stationary disk is three-dimensional from the
inception. Together with the flow over one
rotating disk (Littell & Eaton, 1994), the tur-
bulent Ekman layer (Coleman et al., 1990) and
the 3DTBL created by a rotating free-stream
velocity vector (Spalart, 1989), the rotor-stator
flow is therefore well suited to study effects
of the mean-flow three-dimensionality on the
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turbulence without strong effects from system
parameters such as streamwise pressure gradi-
ents, geometry and initial conditions.

While direct numerical simulations (DNS)
are applicable to low-Reynolds number flows,
all scales in the turbulence can not be re-
solved in flows at higher Reynolds numbers.
In large eddy simulations (LES) the small-
est scales in the turbulence are modeled by
a subgrid-scale (SGS) model, while the large
energy-containing eddies are resolved directly.
In the classical SGS model by Smagorinsky
(1963) a model parameter has to be specified
a priori. In the dynamical model by Germano
et al. (1991) and the mixed dynamical model
by Vreman et al. (1994) this parameter is cal-
culated from the resolved flow field.

The main objective of this work is to ap-
ply LES together with the dynamic and the
mixed dynamic SGS models to predict the flow
in the gap between a rotating and a stationary
disk. The simulations are evaluated by com-
paring with the DNS results of the same flow
configuration by Lygren & Andersson (2001).
Additionally the applicability of LESs to study
the underlying near-wall coherent structures is
examined.

PROBLEM FORMULATION

In large eddy simulations the filtered incom-
pressible Navier-Stokes equations are studied:
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An overbar denotes variables filtered on grid
level. 7;; = u;u; — w;u; are the subgrid-scale
stresses which are introduced from the filter-

ing of the non-linear term in the momentum
equation, and S;; = (0u;/0z; + 0u;/0z;) /2.




In the dynamic model by Germano et al.
(1991) the Smagorinsky eddy-viscosity is used
in expressing 7;;:
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The eddy viscosity vr is defined as
vr = C; A%[S], (4)

where [S| = (285;;5;;)'/2, C; is the Smagorin-
sky coefficient and A is a length-scale of the
filter width. In the dynamic approach C? is
evaluated by introducing a wider test filter ~ of
length-scale A. Assuming that C? is equal on
the grid-filter-level and the test-filter-level, the
Smagorinsky coefficient is expressed as
o0 gy _ L {LijMij)

where L,;j = 1;’[7_7 - ﬁz'ﬁ'] and Mij =
A? (a2|§|§ij - [glglj) To avoid that the de-
nominator in equation (5) becomes zero, the
equation is usually averaged (indicated by ())
in homogeneous directions. The only ad-
Jjustable parameter is thus the ratio a between
the length scales A/A.

In the mixed dynamic model by Vreman
et al. (1994) a similarity model is used together
with the Smagorinsky model to express the
SGS stresses:
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Here, the modified Leonard stresses L =
U;i; — U;u; have been introduced. The
Smagorinsky coefficient is in the mixed model
evaluated as
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To achieve a feasible simulation of the flow
between the disks, the computational domain
consists of an angular section A between the
radial surfaces r; and ro, see figure 1. In
the tangential direction ordinary periodicity is
used and no-slip is imposed at the two disks. In
the radial direction ordinary periodicity is not
applicable since statistical quantities vary with
r. Wu & Squires (2000) applied quasi-periodic
boundary conditions in the radial direction in
a large eddy simulation of flow over a rotat-
ing disk. This approach was slightly modified
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Figure 1: Sketch of the computational domain

by Lygren & Andersson (2001) in their DNS
of rotor-stator flow. In the present study, this
quasi-periodicity is adopted.

The governing equations (1) and (2) are
discretized using second-order finite-differences
in cylindrical coordinates. A second-order
Adams-Bashforth scheme is used as time-
advancement. The Poisson equation is solved
by a fast multigrid method. The averaging () in
equations 5 and 7 is first performed in the tan-
gential direction. Thereafter C? is expressed
as C%(r,z,t) = Cy(z,t) + C1(z,t)r where Cp
and C) are obtained in the least-squares sense
from the tangential averages of C2(z;,t).

The flow between infinite disks is locally
characterized by the rotational Reynolds num-
ber Re, = r?w/v and the local gap ratio
G = s/r. Here r is the radial coordinate, w
the angular velocity of the rotating disk, v the
kinematic viscosity of the fluid and s the dis-
tance between the disks. The Reynolds num-
ber and gap ratio in the present study equal
the parameters in the DNS by Lygren & An-
dersson (2001): Re,,, = 4-10° and G,,, = 0.02
where r, = (r1 +72)/2 . The size of the com-
putational domain is 3.5s X 14s X s in the radial,
tangential and axial directions. The corre-
sponding number of grid points is 96 x 48 x 48.
In wall units the grid spacing is approximately
40 % 20 in the tangential and radial directions.
The grid point closest to the disks is about
0.5 wall unit from the surface. The tangential
length of the computational domain is twice
the length of the domain used in the DNS in
order to include more grid-points in the aver-
ages in equations (5) and (7).

RESULTS AND DISCUSSION

Turbulence statistics

Three LESs are performed on the same com-
putational mesh using no SGS-model, the dy-
namic model of Germano et al. (1991) and
the mixed dynamic model do to Vreman et al.
(1994). The three mean velocity components
are compared with DNS results of Lygren &
Andersson (2001) in figure 2. The velocity
components are averaged in tangential direc-
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Figure 2: Mean velocities. The rotating disk is located at
z = 0. Bold: DNS (Lygren & Andersson, 2001). R

Vreman; — — —, Germano; -« -« - - , no model.
Re, Rer
Rotor | Stator
DNS 265.7 213.5
No model | 278.8 223.3
Germano 264.0 216.8
Vreman 267.7 214.3

Table 1: Reynolds numbers Re, = u,s/v, where u, =
(v8Uy /82)'/2, at the rotating and the stationary disk.

tion and in the radial direction after normal-
izing with the local disk speed wr. The mean
velocity components are relatively insensitive
to the model used. The tangential mean ve-
locity in the LES predictions is slightly under-
predicted in the region 0.1 < z/s < 0.5. This
underprediction is actually smallest when no
model is used.

The Reynolds numbers based on the friction
velocity at the two disks are listed in table 1.
When no model is used, the friction velocity
is overpredicted by approximately 5% at both
disks. In the simulation using Vreman’s model,
the results deviate less than 1% from the DNS.

Turbulence intensities and shear stresses are
presented in figures 3 and 4. Tangential in-
tensities are higher than the DNS data. The
largest discrepancy is when no model is used
and smallest for the Vreman model. The agree-
ment is better near the stationary than at the
rotating disk. The explanation is that the reso-
lution in wall units is highest at the stationary
disk.

The wall-normal intensities are underpre-
dicted when the SGS models are used, in
contrast to when no model is applied. This
is a common feature of LESs using lower-
order finite-differences, see e.g. Balaras et al.
(1995), Kravchenko & Moin (1997) and Wu &
Squires (2000).

The sum of the resolved and modeled tur-
bulent shear stresses are presented in figure 4.
Ugu,, which is the primary shear stress, is
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very well predicted by the simulation using the
SGS model by Vreman. Germano’s SGS model
slightly underpredicts this stress, while the
simulation without any model severely overpre-
dicts it. The secondary shear stress, U u,, in
figure 4b) is underpredicted in the central re-
gion in all the simulations, as compared to the
DNS. The third shear stress, ugtuy, is generally
of negligible importance in boundary layer cal-
culations. The LESs fail to reproduce the sig-
nificant negative dips near both disks, whereas
ugu, is overpredicted in the core region. This
third shear stress tend to converge statistically
very slowly and further sampling would tend
to smoothen the curves in figure 4c).

To gain further insight into the structure of
the simulated turbulence, the anisotropy pa-
rameter A = 1 — 9/8(Ay — Asz) is shown in
figure 5. Ay and A3 are the second and third in-
variants of the anisotropic part of the Reynolds
stress:

Az = ajrag; and Az = ajxapa;,

where a;; = uju};/2k — 6;j/3. A equals unity
when the turbulence stress is isotropic and zero
in two-component turbulence (Lumley, 1978).
Figure 5 shows that A is relative insensitive to
the SGS model used, and that A is reduced
in the LESs as compared to the DNS. The re-
duced degree of isotropy is therefore an effect
of the coarseness of the numerical grid. The
underprediction of wall-normal fluctuations in
the simulations using SGS model is therefore
partially caused by the reduced level of ugug.

Turbulence structures

As shown in the previous section, the sta-
tistical predictions from the LESs are in rea-
sonable good agreement with the DNS re-
sult by Lygren & Andersson (2001). Littell
& Eaton (1994) showed that although there
are strong similarities between 3DTBLs and
2DTBLs, the three-dimensionality of the mean
flow slightly modifies the underlying turbu-
lence structure. In 2DTBLs the main struc-
tures in the near-wall region are streamwise-
oriented high- and low-speed streaks and quasi-
streamwise vortices, see e.g. Robinson (1991)
and Jeong et al. (1997). Lygren & Anders-
son (2000, 2001) examined the structures in
the near-wall regions of the rotor-stator flow,
and concluded that the quasi-streamwise vor-
tices tend to produce weaker sweeps than the
vortices found in 2DTBLs. Vortices of one sign
of rotation were also responsible for generating
most shear stress. This was found to be due
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Figure 3: Turbulence intensities. Legends as in figure 2

both to an unequal number of vortices of each
sign, and to the shear stress generated by indi-
vidual vortices of one sign being stronger than
the shear stress generated by oppositely rotat-
ing vortices.

The reliability of flow structures deduced
from LESs is often questionable. It is there-
fore of interest to verify whether the modifica-
tions of the coherent structures by the three-
dimensionality agree with the findings from the
DNS by Lygren & Andersson (2001). Littell
& Eaton (1994) analyzed the flow field near
strong sweeps and ejections and observed a dis-
tinct asymmetry in the radial direction. This
asymmetry is not possible in a 2DTBL. Kang
et al. (1998) refined this study by perform-
ing a quadrant analysis of the field near the
detection points. Lygren & Andersson (2000,
2001) also used a quadrant analysis technique
in the study of the flow near strong ejections
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Figure 4: Turbulence shear stresses. In the simulations us-
ing Germano’s and Vreman’s SGS models the sum of the
resolved and modeled stresses is shown. Legends as in fig-
ure 2
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Figure 5: The parameter A =1 —9/8(A2 — A3). Legends as
in figure 2
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Figure 6: Contours of quadrant 4 contributions to uguz near
strong ejections. Near the rotating disk. a) DNS, Lygren &
Andersson (2001). b) LES.

Figure 7: Contours of quadrant 2 contributions to “gu, near
strong sweeps. Near the rotating disk. a) DNS, Lygren &
Andersson (2001). b) LES.

and sweeps in the DNS of the rotor-stator flow.
This analysis is here repeated of the flow field
generated by the LES using Vreman’s mixed
SGS model.

In figure 6 isocontours of quadrant 4
(sweeps) contributions to the ugu,-stress near
strong quadrant 2 events (ejections) are shown.
A strong ejection is defined as wjpul, >
3Uf sty rms and u; > 0. The position of the
strong ejection is marked by a cross located
at Art = 0 and 2z}, = 20 where z,¢ is the
distance to the nearest disk. Since the quasi-
streamwise vortices are associated with strong
sweeps and ejections, the peaks on each side
of the detection point are signatures of the two
vortices generating the ejection. These vortices
are indicated in figures 6 to 9. The quadrant
4 contribution is asymmetric relative to the
origin Art = 0. This asymmetry, which is
observed both in DNS (fig. 6a) and LES (fig.
6b), is not possible in 2DTBLs, and is there-
fore a consequence of the three-dimensionality
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Figure 8: Contours of quadrant 4 contributions to ugu; near
strong ejections. Near the stationary disk. a) DNS, Lygren
& Andersson (2001). b) LES.
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Figure 9: Contours of quadrant 2 contributions to ugu, near
strong sweeps. Near the stationary disk. a) DNS, Lygren &
Andersson (2001). b) LES.

of the mean flow. Since the peak is most pro-
nounced for Art < 0, it is concluded that the
left vortex is responsible for generating most of
the strong ejections.

Figure 7 shows contours of quadrant 2
contributions to the ugu,-stress near strong
sweeps. A strong sweep is defined as ugu, >
3Up rsUs,rms and u; < 0. As for the flow field
near the strong ejections in figure 6, there are
asymmetries between Art < 0 and Art > 0.
The asymmetries in figure 7a) and 7b) are sim-
ilar and the conditional averages from the DNS
and LES therefore lead to the same conclusion,
namely that the right vortex is responsible for
generating most of the strong sweeps.

Likewise, the conditional averages near
strong sweeps and ejections at the stator side
in figures 8 and 9 closely resemble those ob-
tained from the DNS, thus leading to the same
conclusions as already drawn by Lygren & An-
dersson (2001).



SUMMARY

Large eddy simulations of the three-
dimensional flow between a rotating and a sta-
tionary disk have been performed using finite-
difference approximations. A dynamic and a
mixed dynamic model were used to parameter-
ize the SGS stresses. These simulations were
compared with a LES without any SGS model
and with recent DNS results. The main effect
of the SGS models was to improve the pre-
dicted friction at the disks, and to improve the
predictions of the streamwise turbulence inten-
sity and the primary turbulence shear stress.
The mixed dynamic model resulted in better
predictions of the turbulence intensities and
shear stresses than the dynamic model.

Near-wall structures in the flow field gen-
erated by the LES using the mixed dynamic
model were analyzed with the view to study
effects of the three-dimensionality of the mean
flow. Conditional averaging was performed
around strong ejections and sweeps. The con-
clusions to be drawn from this study confirm
the conclusions already obtained from the
DNS by Lygren & Andersson (2001). In spite
of the moderate grid resolution used herein,
the conditionally-averaged flow structures
compare surprisingly well with those of the
fully resolved DNS by Lygren & Andersson
(2001). It is therefore conjectured that reli-
able information can be deduced also from
conditionally-averaged flow structures in other
LESs, provided that the grid resolution in wall
units corresponds to that used in the present
study.
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