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ABSTRACT

Experimental results concerning the behav-
ior of the velocity structure functions in a
turbulent boundary-layer are presented. Our
analysis in terms of extended self-similarity
confirms recent findings about a double-scaling
regime in the logarithmic region. The crossover
is controlled by the mean shear. At small sepa-
rations, the exponents of the power-laws for the
velocity structure functions are close to those
usually experienced in homogeneous isotropic
turbulence. At larger separations, where the
mean shear strongly affects the velocity fluctu-
ations, the exponents are substantially lower.
The relationship between the present results
and the existence of a new form of similarity,
recently proposed for shear dominated turbu-
lence, is thoroughly investigated.

INTRODUCTION

Scaling laws are well known in turbulence
since the earliest works of Kolmogorov (Kol-
mogorov 1941, Kolmogorov 1962). In homoge-
neous and isotropic conditions, the structure
functions S, i.e the statistical moments of the
longitudinal velocity difference at separation r,
are predicted to be scale invariant in the iner-
tial range. When the dissipation < € > and
the scale r are the only relevant parameters,
dimensional arguments yield a value (,= p/3

for the exponent
< OVP >oc< e >PB ppl3

(1)

which, for n = 2, implies the well-known law
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for the energy spectra E(k) ~ k=%/3. Ex-
periments as well as numerical simulations,
however, have shown clear deviations of the
higher-order exponents from this dimensional
prediction. The anomalous correction is re-
lated to the statistical properties of the local
dissipation field via the Refined Kolmogorov
Similarity Hypothesis (RKSH)
<OVP > o< /3 > pPl3,

(2)

Here ¢, denotes the local dissipation rate, spa-
tially averaged over a volume of characteristic
dimension r. Hence the scaling properties of
the dissipation field ( < € >oc r"™) explain the
observed values for the exponents of the struc-
ture functions.

Quite surprisingly, power laws have been ob-
served also in very different conditions, such
as wall bounded flows and homogeneous shear
flows, using both DNS (Toschi et al. 1999,
Gualtieri et al. 2000) and laboratory exper-
iments (Antonia et al. 1998, Onorato et al.
2000).

Recently the physical origin of the scaling
laws in shear dominated turbulence has been
addressed in Benzi et al. (1999), where a new
form of similarity law has been proposed and
checked against numerical data. Here, we re-
address the problem by considering experimen-
tal data for the logarithmic region of a bound-
ary layer.

SCALING LAWS

To investigate the scaling properties of near-



wall turbulence, we consider a flat plate bound-
ary layer, obtained in a wind tunnel operated
at 12 m/s. The Reynolds number, based on the
momentum thickness, is Reg ~ 2200. Hot-wire
measurements of the streamwise component of
velocity have been carried out at several wall-
normal distances. To characterize the statisti-
cal properties of turbulence, we consider the
hierarchy of the longitudinal structure func-
tions S,

Sp =< VP >=<[v(z) —v(z+7)]F >.

(3)

Brackets denote here time-averaging, and Tay-
lor hypothesis is used to convert temporal into
spatial increments.

At moderate Reynolds numbers the velocity
fluctuations do not exhibit a well-defined in-
ertial range, hence no clear power law can be
extracted in terms of separation r. Neverthe-
less, a power-law behavior is exhibited in terms
of Extended Self Similarity (Benzi et al 1996).
This technique extends up to the dissipative
range the scaling properties of the velocity in-
crements and thus allows for an accurate eval-
uation of the scaling exponents (Frisch 1995).
ESS employs as similarity variable the third or-
der structure function instead of the separation

7"
< VP > < §V3 >, (4)

Since S3 in the classical inertial range is pro-
portional to r, as follows from the Karman-
Howarth equation, the relative exponents of S,
vs S3 should equal those measured directly in
terms of separation r. Whenever the turbu-
lence is non-homogeneous and anisotropic, no
general link between scaling in terms of sepa-
ration and ESS exponents should be expected.
Moreover, in wall-bounded flows, the statis-
tical features of the flow, e.g. the structure
functions in particular, will strongly depend on
the distance from the wall.

In the present analysis, we restrict our at-
tention to a single measurement point in the
logarithmic region (y* = 70), which has been
selected to illustrate the two basic mechanisms
which characterize near-wall turbulence. As a
general result, our experiments (Jacob et al.
2001) indicate that two distinct and coexist-
ing scaling regimes characterize the wall region,
confirming a previous analysis by Ciliberto et
al. (2000). Depending on the distance from
the wall or, more precisely, on the magnitude
of the mean-shear, the relative extension of the
two ranges varies.

Typical results obtained at y* = 70 are
shown in figure 1, where the logarithm of S
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is plotted versus the logarithm of S3. Three
distinct regions of nearly constant slope are
observed. The ”trivial” power-law behavior
which characterizes the dissipative region (g =
2) is not shown in the figure. For larger sepa-
rations a second interval emerges, and a least-
square fit yields (g ~ 1.78, an estimation which
falls in the range of values measured in ho-
mogeneous and isotropic conditions (Benzi et
al. 1995). The values for the other exponents
({5 ~ 1.54, ¢4 ~ 1.28) confirm this finding.

At even larger scales, another range sepa-
rates out, where a power-law with a quite dif-
ferent exponent ((s ~ 1.54) establishes. This
value is actually very close to those measured
in other conditions of very strong shear (Toschi
et al. 2000, and references therein).

The abrupt transition which occurs between
these two scalings can be better appreciated
by looking at figure 2 which shows the lo-
cal slope of the previous ESS plot. Such a
representation evidences also the extension of
the plateaux corresponding to the two differ-
ent scalings. This transition is actually related
to the behavior observed in near-wall veloc-
ity spectra (Hinze 1959, Townsend 1976): an
intermediate region appears between the low
wavenumber energy containing range and the
inertial range (where the spectrum follows the
—5/3 law). This intermediate region is charac-
terized by a spectral decay as k™!, and extends
over a range of scales (1/0) < k < (1/y),
where 0 is the boundary layer thickness and
y is the distance from the plate. In our data, a
too small separation of scales occurs to display
this behavior directly in terms of wavenumber
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Figure 1: ESS: log< 6V > versus log< 6V3 > at y* =170
(open circles). The slopes of the dashed and solid lines are
1.78 and 1.54 respectively.



in the energy spectrum. In terms of ESS the
crossover between two rather different regions
is instead very clear. Actually, this crossover
is associated with a further length scale, intro-
duced by the mean shear in addition to the two
scales (dissipation and integral scale) which are
typical of homogeneous isotropic turbulence.

The shear scale L; may be estimated by
equating the magnitude 0Ug of the velocity
fluctuations induced at scale r by the mean
shear (proportional to Sr) and the fluctuations
dU, associated to the classical energy cascade
(proportional to (er)!/3). Hence, L, follows
as Ly oc (e/S%)/2. At scales n < r < L
(where 7 is the Kolmogorov scale) the influence
of the mean shear is negligible. Vice-versa,
at larger separations, the statistical proper-
ties of turbulence are strongly affected by the
presence of the shear. Specifically, in the log-
arithmic region, the balance between energy
dissipation and production leads to L, o< ky,
hence the crossover between the two behaviors
occurs at a wavenumber k o y. Clearly the ex-
ponents observed in the isotropic-like scaling
region are expected to be explained in terms
of the Refined Kolmogorov Similarity Hypoth-
esis, in the form of equation (5) below. Under
this respect, the values of the exponents we
find are in complete agreement with those mea-
sured in isotropic conditions, suggesting that
the anomalous correction to the dimensional
exponent is still given in terms of the statis-
tical properties of the dissipation field. The
origin of the shear dominated-range is a priori
less clear. We investigate this point in more
detail in the next section.

25
o 2
1o (@)
Ke) G,
o O A
o I TLOOOTEALD
(%) (@]
3 O(YYW‘(DOO
- 15F
1 . : ! . . ] . .
0 100 200 300

Figure 2: d(log < 6V® >)/d (log < 6V® >) as a function of
separation at y*+ = 70. Indicated are also the fits in the two
scaling regions.
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SIMILARITY LAWS

In order to gain insight in the physical na-
ture of the observed ESS-scaling, let us con-
sider the classical RKSH in its extended form

(5)
Alternatively, to try to avoid a direct use of
the measured dissipation field, we can rewrite
equation (5) in the form:

Sp(r)

Sa(r)?P ©)

A plot of the left hand side of this equation
is given in figure 3. The two distinct regions
of scaling already observed in figure 1 are also
appreciated here. Their estimated slopes are
s1 =~ —0.23 and sy ~ —0.56 for the range at
small and large separations respectively. The

validity of equation (6) in both ranges would
imply a radical change in the statistical prop-
erties of the dissipation field at the crossover
between the two regimes. This particular be-
havior is very difficult to be explained in phys-
ical terms. A more reasonable explanation is
provided by the failure of the classical refined
similarity law in the range where the shear is
particularly relevant, i.e. for separations larger
than the shear scale L.

By conjecturing a trend towards the recov-
ery of an isotropic-like behavior at small scales
we should expect equation (5) to correctly pre-
dict the dissipation in the range n < r < L.
The value s; = —0.23 corresponds to the scal-
ing behavior of the dissipation with respect to
S3. This figure is very close to that familiar to
most people working in the field of scaling laws
for homogeneous isotropic turbulence. Within
experimental accuracy, it reproduces the scal-
ing of < €2 > with respect to r, i.e. in the ESS
context, with respect to S3, which is given by
s1 = —0.22. Hence the present results are con-
sistent, at small scales, with the classical form
of refined similarity, and suggest that the be-
havior of the dissipation field is essentially the
same as that of homogeneous isotropic turbu-
lence.

Moreover, the considerations we have pre-
sented provide a strong feeling that at sep-
arations larger than Lg the classical form of
RKSH should fail. In particular, if we assume
a smooth behavior of the dissipation at the
crossover between the two regions, the scal-
ing exponent of < el > with respect to Ss
should remain rather constant or, at least,
should change smoothly. As we will see, this
conjecture is consistent with the existence of

<Sp>a< PP >< 83 >P3

x< /3>

~ ~
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Figure 3: log(Se/S2) versus log S3. The dotted line gives
the slope of < €2 > via the She-Lévéque model.

a new form of RKSH, originally proposed in
Benzi et al. (1999). Actually, in the shear-
dominated range, a dynamics quite different
from the pure energy cascade takes place, since
the energy balance is now dominated by the
production term, dimensionally proportional
to S < 6V? >,

This circumstance has suggested a new
form of similarity in terms of Sy to replace the
RSKH in the range of scales where the pro-
duction term overwhelms the energy transfer
term ie. for Ly < r < lg, where lg is the
integral scale:

<Sp>o< 2> 8502

(7)

We note explicitly that the £~! behavior is
entirely consistent with this new form of sim-
ilarity, and that the estimate of the transition
scale agrees with the classical results of wall
bounded flows. Once again, the (measured)
combination of structure functions S,,/Sg”/ 2
can be isolated from the moments of the dissi-
pation field. This quantity is plotted in figure 4
for p = 6. We obtain an estimated slope of
s1 ~ —0.35 and s9 ~ —0.61 in the two scal-
ing regions. In particular, the slope in the
shear-dominated region is entirely consistent
with the exponent of < €3 > with respect to
S3, as known from homogeneous isotropic tur-
bulence. Actually, the dotted line in figure 4
has a slope s ~ —0.592 given by the the value,
for ¢ = 3, of the expression

—Sat2(i-0R)  ©

provided by the She-Lévéque model for homo-

Tsl(Q) =
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geneous isotropic turbulence.

These results confirm that two quite dis-
tinct behaviors arise in the near-wall region:
in the range of scales n < r < Lg the iner-
tial dynamics typical of homogeneous isotropic
turbulence takes place, and the classical RKSH
holds. In the range Ly < r < L4 the dy-
namics is controlled by the energy production,
and the features of turbulence can be described
by the new form of similarity. The extension
of these two ranges is controlled by the shear
scale. When this latter falls halfway between
the Kolmogorov scale and the integral scale,
as in the present case, two distinct regions can
be clearly observed. More precisely, the posi-
tion of the shear scale can be estimated by two
dimensionless parameters, namely S* and S},
defined respectively as :

x Su?ﬂms la 2/3
S_———<€>O((L_s) (9)

and

S* =8/ <e>)"?« (Li)2/3

S

(10)

Moving towards the plate, the shear scale
diminishes, and the extent of the classical in-
ertial range reduces. Finally, in the buffer, the
shear scale almost collapses on the dissipation
scale, and the shear-dominated behavior ex-
tends over the entire range of scales.
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Figure 4: log(Se/S3) versus log S3. The dotted line gives
the slope of < e? > via the She-Lévéque model.

FINAL REMARKS

We have shown that two coexisting scaling
behaviors characterize the log-region of a tur-
bulent boundary layer. The associated power-



laws extracted in terms of ESS are entirely con-
sistent with the classical form of RKSH in the
inertially dominated range. Above the shear
scale, the exponents change radically. The
new form of similarity law given in Benzi et
al. (1999) has been shown able to fit the ex-
perimental data. The use of the two scaling
laws has allowed for an estimation of the mo-
ments of the dissipation field in the two ranges
in terms of the velocity structure functions.
The values of the exponents we find strongly
suggest that the statistical properties of the
dissipation are not substantially altered with
respect to homogeneous and isotropic turbu-
lence. At present, this is only a strongly sup-
ported conjecture, which has been confirmed
by DNS of wall turbulence and homogeneous
shear flows (Gualtieri et al. 2000, Benzi et
al. 1999). A direct experimental verification
needs the availability of all the components of
the instantaneous velocity gradient. By us-
ing a one-dimensional surrogate, we are able
to attempt a preliminary evaluation of the dis-
sipation, which is found in surprisingly good
agreement with the above conclusions. This
can be appreciated in figure 5, which gives the
combination of structure functions

Sp(r)

Satrpra AT

(11)

together with the moments of the dissipation
<€ > and < € > as estimated from the one-
dimensional surrogate.
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Figure 5: log(Ss/Sg/a) versus log S3. Filled symbols:
a = 3, open symbols: a = 2. The solid line represents the
experimental evaluation of < €2 > via its one-dimensional
surrogate, while the dotted lines represents the experimental
evaluation of < €2 > via its one-dimensional surrogate.
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