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ABSTRACT

Modelling of passive scalar transport in tur-
bulent flows is considered, with the scope of
testing an additional simplification of the ex-
plicit algebraic model (EASFM), recently pro-
posed by Wikstrém, Wallin and Johansson
(Phys. Fluids, 2000). Here the possibility to
use a constant value for the turbulent scalar to
dynamical time-scale ratio is examined, with
the aim of avoiding two additional transport
equations needed in the original model. The
simplified EASFM is calibrated against homo-
geneous shear flow and turbulent channel flow.
A model was added for considering the ne-
glected diffusion terms in regions with low tur-
bulence production. The resulting model was
found to be able to predict all of the scalar flux
components well, even though the scalar to dy-
namical time-scale ratio needed in the model,
was assumed to be equal to a constant.

INTRODUCTION

The characteristic feature of passive scalars
is that its concentration, ©, is influenced by the
turbulent motion, but does not itself influence
the velocity field. The scalar can for exam-
ple be temperature, or concentration of some
pollutant. The passive scalar flux, u;0, is com-
monly modelled through a gradient diffusion
assumption, or eddy-diffusivity model (EDM)
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where Pry is the turbulent Prandtl number.

Unfortunately, the eddy-diffusivity model is
not able to predict realistic values of all com-
ponents of u;0, since it predicts the scalar flux
to be aligned with the mean scalar gradient,
which in most cases is a bad approximation.
In, e.g., shear layers the streamvise flux is ac-
tually larger than the flux in the gradient direc-
tion. However, in thin shear layers this effect is
of minor importance for the mean scalar field.

Recently a new fully explicit algebraic scalar
flux model was published by Wikstrom et al.
(2000). They formed an algebraic relation for
the passive scalar flux, u;0, in terms of mean
flow quantities by applying an equilibrium con-
dition in the transport equations for the nor-
malized passive scalar flux. This is a reason-
able assumption in many flows if the velocity
and scalar gradients are large. With a spe-
cial choice in the model of the pressure scalar-
gradient correlation and molecular destruction,
an attractive simplification of the general ex-
plicit model was obtained by Wikstrom et al.
The model is valid also for three-dimensional
mean flows and relates the scalar flux vector
to the Reynolds stresses, u;u;, the mean flow
gradient, OU;/0x;, the mean scalar gradient,
00 /0x;, and the time scale ratio, r
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The resulting model reads,
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where the tensor B;; is an explicit function of
the mean flow gradient normalized by the tur-
bulence time scale (7 = K/¢), the production
to dissipation ratio, Pk /e, and the time scale
ratio, r. The model was evaluated with promis-
ing results by Wikstrém et al. for homogeneous
shear flow with imposed mean scalar gradients
in three different directions, turbulent channel
flow, and a flow field downstream of a heated
cylinder.

The model proposed by Wikstrom et al. also
needs two additional transport equations for
the half scalar variance, Ky = 62/2 and its dis-
sipation rate, €g, in order to determine the time
scale ratio, r. The modelling of the Ky and
€p equations was not addressed by Wikstrom
et al. (2000), but considered by Johansson &
Wikstrom (1999).

In this study we will examine a simplified
approach with the assumption of an algebraic
relation for the time-scale ratio, r, with the
aim of avoiding the additional transport equa-
tions, and also for developing a complete model
including near-wall treatment. Investigations
show that the time-scale ratio, r, to some ex-
tent is approximately constant in different flow
cases, so the first attempt will be to set r equal
to a constant. The resulting model is validated
in some simple flow cases.

DESCRIPTION OF THE ALGEBRAIC
MODEL FOR SCALAR TRANSPORT

The scalar flux vector, u;f, appearing in
the Reynolds averaged transport equation for
the mean scalar originates from the averag-
ing of the nonlinear advection term and needs
to be modelled. The transport equation for
the scalar-flux vector can formally be derived
and can alternatively be replaced by a trans-
port equation for the normalized scalar flux

§i = uiG/\/ KK@. This reads
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Po= WS Pu-Tmlh
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are the production terms in the K, Kj and u;0
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equations, respectively. The term Di(g), is the
molecular and turbulent diffusion of &;.

In order to close the system of equations
for the normalized scalar flux, models for the
pressure scalar-gradient correlation, Ilg; and
the destruction rate tensor, €p;, and transport
equations for Ky and g are needed. More-
over, it is necessary to model the Reynolds
stresses U;u; in an appropriate way where all
components are accounted for. Hence, stan-
dard eddy-viscosity models are not adequate
for this purpose.

The equilibrium assumption

In nearly homogeneous steady flow, advec-
tion and diffusion of the non-dimensional scalar
flux may be neglected, see Wikstrom et al.
(2000). If the driving forces, the velocity and
scalar gradients, are large this assumption is
fair, but in regions where production terms
on the right hand side of (4) are small, the
equilibrium assumption may be incorrect. One
example of that is in the center of a turbulent
channel flow, where the magnitudes of the gra-
dients are small. This is a known problem also
for algebraic Reynolds stress models based on
a similar approach, where the advection and
diffusion of the Reynolds stress anisotropy are
neglected.

The equilibrium assumption implies that
the left hand side of (4) is neglected, result-

ing in an algebraic implicit relation (the r.h.s.
of eq. (4) =0).

Modelling IIy; — €g;

The pressure scalar-gradient correlation,
IIy;, and the destruction rate tensor, eg;, in
(4) contain higher-order correlations, which are
unknown and must therefore be modelled. A
general model that covers most published sug-
gestions may be written as,
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see Wikstrom et al. (2000). This model is
nonlinear in the term multiplied by cgs, but by
choosing cgs = 1/2 in (6), the non-linear term
will automatically eliminate the corresponding
non-linearity caused by the &Py - term in (4).
In addition, the cyp; coefficient was suggested
by Wikstrom et al. (2000), to be a function of
the time-scale ratio, r (see table 1).



model

Co1 Co2 Co3 Co4 Co5
WWJ 167 0 0 0 05
HWWJe 451 —0.25 0 004 05
HWWJd 451 —0.47 0.020 0.08 0.5
HWWJf 451 —0.50 —0.012 0.02 0.5

Table 1: The different combinations of the parameter values
in the model of Ily; — €p; given by (6).
The explicit algebraic solution

The implicit algebraic relation resulting
from the equilibrium assumption and with the
general model for Ilg; — £¢; (6) may be solved
resulting in a fully explicit relation for u;0, see
Wikstrom et al. (2000). The specific choice of
cos = 1/2 in (6) reduces the complexity of the
solution given by (3), and yields

(G2—1Q1)I-G(csS+ca)+(csS+caf)’

B =
G*-1GQ1+3Q2

(7)

The normalized mean strain and rotation rate
tensors are defined as S;; = (7/2)(U;; + Ujs)
and Q;; = (7/2)(U;; — Uj;). 1is the identity
matrix. Moreover, cg = 1— cgo — cy3 and cq =
1 —cgg + cp3. Qr=citr{S?} + c%tr{ﬂg} and
Q2=(2/3)c3tr{S3} +2cscdtr{SN?} where tr{}
denotes the trace. Finally
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We see that the time-scale ratio, r, only en-
ters in the expression for G in (8) together with
the cg1 coefficient. 'The effect of the variation
of r in different flow regions may, thus, be re-
placed by a constant r and a variation of cgyy.
In this study we will study the possibility of
choosing both r and cg; as constants. Seven
sets of constants (a-g) were tested by Hogstrom
(2000) of which three are further studied here,
labeled (HWWJ%f),

When the time-scale ratio, r, is defined ac-
cording to (2), and the model coefficients cgo-
co4 are set to zero, this model is referred to as
the (WWJ) model.

CALIBRATION OF THE ALGEBRAIC
MODEL AGAINST GENERIC CASES

The first attempt will be to set 7 to a con-
stant, calibrated for different cases studied.
Using DNS data as input to turbulence models
reveals how accurate the models are, and can
therefore be used for calibration of the model
constants.

In table 1, a comparison between the model
constants tested in the different flow cases can
be seen. The value of the cg; parameter for the
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de

dw H ((11_(:- Kg T
Casel 2.5 0 0 0.417 0.536
Case 2 0 2.5 0 0.080 0.618
Case 3 0 0 2.5 0.123 0.501
ai aiz a2 % €
0.455 —0.317 —0.340 28.284 10.741 54.494

Table 2: Homogeneous shear flow with mean scalar gradients
in each of the three orthogonal directions. DNS data of
Rogers et al. (1986), case C128U at St = 12.

(HWWJ) model is equivalent to the (WWJ)
model with r = 0.55. Also other values for the
cp1 coefficient has been tested and it has been
shown by Hogstrom (2000) that different sets
of these parameters can give almost identical
results in the flow cases studied below.

Homogeneous shear flow

In this study, data have been used from
direct numerical simulation (DNS), of homo-
geneous shear flow with mean scalar gradients
in three orthogonal directions made by Rogers
et al. (1986). Data from the simulation can be
seen in table 2.

In table 3, the predicted scalar fluxes us-
ing the different models can be seen. Model
(HWWJ?) was chosen in order to minimize the
overall deviation from DNS in all cases. Model
(HWWJ?) predicts the v8 component best in
case 2, while model (HWWJ/) predicts the uf
best in case 1. However, there are no significal
differences between the (HWWJ) models and
the original (WWJ) model, so for this case the
assumption of a constant r = 0.55 can be de-
fended.

The eddy-diffusivity approach (EDM) might
be expected to work only for the flux compo-
nent in the same direction as the mean scalar
and velocity gradients. This is the case for the
vf flux component in thin shear layers or for
Case 2 so it is not expected that the eddy-
diffusivity approach can give realistic values for
the other cases and flux components. Surpris-
ingly, EDM cannot even give good prediction
of the v@ flux component for Case 2.

Case 1 Case 2 Case 3
uf v0 ul vl wl

DNS data —2.41 045 0.94 —036 —0.67
WWJ —2.05 042 1.13 -046 —0.70
HWWJe —-2.14 040 1.13 -042 —0.70
HWWJ4 —-2.05 033 114 -037 —0.67
HWWJf —-241 045 135 —0.45 —0.72
EDM —0.54 0 0 —0.54 —0.54

Table 3: Homogeneous shear flow with mean scalar gradients
in each of the three orthogonal directions. The predictions of
scalar fluxes for the models (WWJ) and (HWWJ), compared
to DNS data of Rogers et al. (1986), case C128U at St = 12.
The fluxes predicted with an eddy-diffusivity model (EDM)
with Pr; = 0.89 and Cy, = 0.09 is also shown.



0.6r

0.55r

0.5 :
0 50

150 200 250
+

y

100

Figure 1: The time-scale ratio, r according equation (2) with
DNS data for turbulent channel flow.

Turbulent channel flow

A DNS of a turbulent channel flow with
a passive scalar and a Prandtl number of
0.71, was generated by Wikstrom (1998). The
Reynolds number based on the centerline mean
velocity and the channel half-width, 4, was
5000, and the Reynolds number based on the
wall friction velocity, u,, and the channel half-
width was 265.

The time-scale ratio r, is approximately con-
stant in the log-region but significally higher
near the wall and in the center of the chan-
nel, see figure 1. The choice r = 0.55 seems
to be rather low in this case, but one needs to
remember that it is the combination of r and
cg1 that enters into the model through the G
expression (8).

The models (HWWJ%%/) and (WWJ) are
presented in figure 2 where the scalar flux
quantities are normalized with

(%)
82/ wall .

We can see that model (HWWJ®) predicts the
scalar fluxes somewhere in the middle, com-
pared to the other models. Model (HWWJ/)
predicts uf best, but over-predicts vd near
the wall, and the opposite is true for model
(HWWJ?). There is a clear tendency that all
models over-predict v8 in the channel center.
The influence of the different model coeffi-
cients was studied by Hogstrom (2000). It was
found that cy3 has a strong influence in the re-
gion 0 < y* < 50 for both components. For
example, by choosing a small negative cg3, uf
increases towards the DNS data, but simulta-
neously the overshooting for vf near the wall
increases. The curves will also become steeper
at the wall when cg3 is negative. When using

v
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Figure 2: Comparison of model (WW J) and (HWWJ) mod-
els with r = 0.55 in turbulent channel flow. ---, (WWJ);

—, (HWWJ%); - - -, (HWWJ9); - . -, (HWWIF); %, —ub "
from DNS; o, 8" from DNS.

cgs in the model, cgo will also influence the v8
component. For small cy3 this influence is quite
small though. All these effects can be seen in
figure 2. The behaviour of the vf flux com-
ponent will influence the level in the log-layer
when doing fully coupled computations of the
channel flow, as will be seen later.

In all these computations, near wall correc-
tions of the turbulent time scale K/e, have
been made in accordance with Durbin’s (1993),
suggested time-scale, 7 = max(K /e, 6.0/v/¢),
in order to have the correct near-wall asymp-
totic behaviour for the flux. By introducing
near-wall damping functions for the cgo and cgq
coefficients a better matching of the near wall
fluxes may be obtained (see Hogstrom (2000)
for details). The near-wall damping functions
are, however, rather ad hoc and cannot be ex-
pected to be of general validity and are, thus,
excluded from this study.

CHANNEL FLOW COMPUTATIONS

By the extensive use of computer algebra
software, a turbulence model tester was con-
structed. The same principal was also used by
Grégoire (2000). This way of solving complex
systems of differential equations dramatically
decreases the time consumed in the process of
going from idea to solution. Moreover, it gives
a nice overview of all equations and model con-
stants needed to close the system, and errors
usually introduced by human mistakes are min-
imized.

The numerical method is second order in
space also on stretched grids, demonstrated
by computations on grids with different res-
olutions. During all computations below, a
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Figure 3: EASFM based on the low Reynolds number
EARSM and the K —w model. Comparison of the (HWWJ)
models with the mean scalar log-law, for turbulent channel
flow. Computed ©t — ©F , using —, (HWWJ®); - - -

wal
(HWWJ9); -.eoe , (HWWJ ') compared to - - -, (log-law) and
o, (DNS).

stretched grid with 100 grid points and a
stretch factor of 1.04 was chosen.

The scalar flux model contains the Reynolds
stress tensor and accurate modelling of all com-
ponents of that is needed, which excludes all
eddy-viscosity models. A reasonable level of
modelling that mathes the modelling level for
the scalar flux is explicit algebraic Reynolds
stress models (EARSM). For the channel flow
computations we have chosen the EARSM pro-
posed by Wallin & Johansson (2000) solved
together with the Wilcox (1994) low-Reynolds
number K — w model, which gives correct be-
haviour for all Reynolds stress components
in the near-wall region. The diffusion term
correction in the EARSM was also used (see
Wallin & Johansson 2000). These equa-
tions were solved together with the proposed
(HWWJ) models.

Figure 3 shows the result from these com-
putations showing the normalized mean scalar
compared to the DNS data and the log-law.
That figure clearly shows that the different
(HWWJ) models gives different levels in the
log-layer. That is mainly because of the dif-
ferences in the near-wall region between the
models, shown in figure 2. Among these mod-
els, the model (HWWJ?) gives the best results.
Consistently with figure 3 the model (HWWJ4)
gives the best prediction of ©;, see table 4.

There is, however, a significant deviation in
the channel center between the computations
and the DNS data. That difference is caused
by the overpredicted vf flux component, also
seen in figure 2. The over-predicted effective
eddy diffusivity leads to a reduced gradient
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Model Ur [

DNS data 0.033 _ 0.046
HWWJe 0.033  0.060
HWWJ4 0.033  0.054
HWWJf 0.033 0.064
HWWJ9+DM 0.033 0.047
EDM 0.033  0.051

Table 4: EASFM based on EARSM and the K — w model.
Comparison of wall gradient values, in terms of u, and
©r = (v/Pru,)(00/0y)w for the (HWWJ) models, the
eddy-diffusivity model (EDM), and DNS data.
locally around the channel center and as a con-
sequence an over-predicted wall gradient, see
table 4. The reason for that is that the equi-
librium assumption is a bad approximation in
that region, where the production terms are
small.

One possibility to overcome the problem in
the channel center is to model the neglected

diffusion Di(g) of & in (4). Such a model (anal-

ogous to that for the EARSM) where DF)
is modelled in the direction of &; could read
DP = CD@(D(K )/ K )¢ and can easily be in-
corporated into the explicit formulation by
modifying the expression for G in (8)

G=%(2c91—1—%+%&)

10
+Cpgmax (1 — 7—1&,0) . (10)
The max function is introduced for avoiding
any influence of the model where Px > €. The
model (HWWJ4+DM) was tested and with
Cps = 8.0 a good fit of ©, to the DNS data
was obtained, see table 4.

In figure 4, the (HWWJ?) model with and
without diffusion model (DM) is compared and
one can see that the behaviour in the chan-
nel center is much improved with the diffusion
model. This is even more clear by looking at
the mean scalar profile without the near-wall
scaling, in figure 5. The error in the channel
center contaminates the complete field for the
model without diffusion correction.

Computational results using the eddy-
diffusivity model (EDM) (1) is also shown in
these figures (4 and 5). The level in the
log region is somewhat underpredicted in fig-
ure 4, which is a matter of calibration of the
near-wall modelling. Othervise, EDM com-
pares rather well with DNS data, which is to
be expected since this modelling approach is
calibrated from boundary layer flows. When
predicting vf with the gradient diffusion as-
sumption, the eddy viscosity v; was defined
according to the k—w model, and the turbulent
Prandtl number, Pr;, was set to a constant,
equal to 0.89. The Reynolds stress uv, was





