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ABSTRACT

Direct numerical simulations of turbulent
Poiseuille and Couette flow have been carried
out in very large computational domains at
different Reynolds numbers. Two-point cor-
relations of velocities, and the pre-multiplied
energy spectra are used to study the large
scale structures. The spanwise scale of large
structures in plane Couette flow is constant
in the channel central region. For Poiseuille
flow, it is variable, but is found to collapse
under a particular power law outer scaling.
The pre-multiplied energy spectra clearly dis-
tinguish between peaks that scale on inner
(wall) variables, and peaks that scale with
channel variables. Couette flow is found to
contain two peaks that are more pronounced
than in Poiseuille flow. A secondary peak in
the streamwise spectra varies in inner vari-
ables, while a secondary peak in the spanwise
spectra varies in outer variables.

INTRODUCTION

With the availablity of direct numerical sim-
ulation (DNS) databases, turbulence struc-
tures in wall bounded flow have attracted much
attention. Small scale turbulent structures
have been studied extensively, but the large
scale structures, although very important, es-
pecially when sound radiation is concerned, are
far from understood.

Jimenez (1998) studied the large scale struc-
ture in a plane Poiseuille flow by picking up
peaks in a pre-multiplied energy spectrum us-
ing DNS data of Kim et al (1987) and later sim-
ulations. It was found that the spanwise peak
positions of the pre-multiplied spectra grow ap-
proximately linearly with wall distance beyond
2zt = 50. The results, especially near the chan-
nel centre, showed considerable scatter from
the linear profile, caused by the relatively small
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computational box with subsequent worsening
of wavelength resolution at low wavenumbers.

The large scale structure in plane Couette
flow is known to be different from Poiseuille
flow (Komminaho et al, 1996 and others). Ex-
tremely long streamwise structures are found
in the core region of plane Couette flow, which
are not found in Poiseuille flow.

In the present study, direct numerical simu-
lations of plane Poiseuille and Couette flow are
performed in very large computational boxes.
The scale of large structures is studied by anal-
ysis of two-point correlation functions and pre-
multiplied energy spectra.

DNS METHOD

The governing equations of incompressible
turbulent flow, the continuity and the momen-
tum equation, are non-dimensionalized with
the reference length Ly, ; chosen as the channel
half width h* and the reference velocity Uy, ¢
set as the friction velocity u} for Poiseuille flow,
and the wall velocity uy, for Couette flow (both
the upper and the lower wall move, with veloc-
ity u¥, and —u;, respectively).
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where w; is the vorticity, w; = €;x0ur/0zj;
Reynolds number is Re = U, fh* /v*, equal to
Re, = uXh*/v* for Poiseuille flow, and Re,, =
us h* /v* for Couette flow; v* is the kinematic
viscosity of the fluid; ¢ = p + w;u;/2 is the
non-dimensional modified pressure, and P; is
the driving body force, equal to 1 for Poiseuille
flow and zero for Couette flow.

Fourier discretization is used for the two
periodic directions, streamwise and spanwise,
while Chebyshev discretization is applied to
the wall-normal direction.  Time advance



is achieved with a third-order Runge-Kutta
method for the convective term and the Crank-
Nicolson method for the pressure and viscous
terms. An implicit treatment is employed to
avoid extremely small time steps in the near
wall region owing to Chebyshev discretization.
The ‘3/2 rule’ de-aliasing has been applied
whenever nonlinear quantities are calculated.
The parallel implementation of Sandham and
Howard (1998) is employed. All simulations
start with an approximate mean turbulent flow
with super-imposed artificial disturbances.

RESULTS

Simulations of plane Poiseuille and Couette
flow were performed in very large computa-
tional domains at different Reynolds numbers,
details of each simulation being shown in ta-
ble 1. All the simulations were carried out on
a Cray T3E super-computer. Statistical data
are accumulated only after the influence of ar-
tificial conditions has disappeared and the flow
has statistically settled down. The convergence
is checked by comparing the statistical data
in successive time segments, making sure that
they are consistent. Simulations were then run
over a long enough time to give good statis-
tics. For example, case A was run over 100
non-dimensional time units with 64 processors,
costing 16,000 PE hours.

Case Type Re grid pts Ly L.
A Poiseuille 180 256 x 121 X 256 24 12
B Poiseuille 360 256 x 161 x 256 12 6
C Couette 1300 1024 x 81 x 512 192 48
D Couette 3400 512 x 121 x 256 48 12

Table 1: Computational grids and box sizes.

Figures 1 and 2 show the two-point correla-
tions at a wall-normal position near the max-
imum of kinetic energy for all cases. The box
sizes of case A, B and C are large enough to get
zero correlations at maximum separation, half
the box length, in both streamwise and span-
wise directions. This demonstrates that the
present simulation domains are large enough
to ensure zero two-point correlations, a condi-
tion that has not been achieved by previous
Couette flow simulations. The box size of case
D ensures zero spanwise two-point correlations,
but leaves a streamwise two-point correlation
residual of 0.0585 at the worst position (the
channel centreline).

Statistics for Poiseuille flow case A have
been compared with Kim et al (1987), with
good agreement, and case B (Re; = 360) with
Moser et al (1999) for Re, = 395, giving sim-
ilarly good comparisons. Couette flow case
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C has been compared with Kristoffersen et al
(1993), with good agreement for mean quan-
tities. Differences between the present results
and Kristoffersen et al (1993) for higher mo-
ments are caused by their smaller box size and
coarser resolution. Further details are given
in Hu et al (2001). Kinetic energy budgets
have been computed for all simulations, and
the energy budget error is typically about three
orders of magnitude smaller than the maxi-
mum of production, as shown in figure 3 for
Poiseuille flow case B and Couette flow case D.

Plane Couette flow is driven by the two walls
moving in opposite directions, and has a typ-
ical S-shaped mean velocity profile, leading to
a non-zero mean velocity gradient at the cen-
treline. The non-dimensional value of this is
0.1924 for Re,, = 1300 and 0.1980 for Re, =
3400 from the present simulations. Tillmark et
al (1993) collected available experimental data
and found that the non-dimensional mean ve-
locity gradient at the centreline varies between
0.15 and 0.3 for Re,, = 750 ~ 19000. DNS of
Komminaho et al (1996) for Reynolds number
Re,, = 750 gave a value of 0.18. This mean ve-
locity gradient gives Couette flow a finite shear
stress at centreline, which leads to non-zero
production as well as dissipation at the chan-
nel centreline (figure 3(b)). This is in contrast
to Poiseuille flow where the production drops
to zero at the centreline, and the shear stress
varies linearly with distance.

In plane channel flows, the spanwise two-
point correlation of streamwise velocity de-
creases with separation and then reaches a neg-
ative peak, the distance to which corresponds
to half the dominant scale in the spanwise di-
rection. The correlation of the spanwise veloc-
ity has the same peak position as the stream-
wise velocity, while the peaks for wall-normal
velocity have the same trend but with half the
separation distance.

The negative peak separations (half the
characteristic spanwise wavelength) are plot-
ted against wall-normal distance in figures 4
and 5 for Poiseuille and Couette flow, re-
spectively. Peaks from another simulation of
Poiseuille flow at Re; = 135 are also plotted.
In both flows, data from different Reynolds
number simulations collapse towards 2zt = 50
for y* < 15 (figure 4(a) and 5(a)), consistent
with the typical statement that the near wall
structures have a spanwise length of 100 wall
units. For Poiseuille flow, the peak separa-
tion then increases with wall-normal distance.
For the low Reynolds number cases, a linear



growth might be concluded (as in Jimenez,
1998), but this is obviously not true for higher
Reynolds number. A collapse of the data is
possible if a new non-dimensional peak sep-
aration, Zpeak = Zpeqr(l — u*/Upmaz)?/R*, is
employed, as is plotted in figure 4(b). A best
fit of the discrete points gives a = 1.3 and

Zpeak = 0-1'!/2 (3)
The data collapse for y% < 0.5 (y < 0.7).
A sudden increase occurs near y* = 15

(more apparent for higher Reynolds number)
for Couette flow, suggesting an overlap of the
near-wall streaks and outer structures. The
separation distance then increases with wall-
normal distance before flattening out above
y = 0.5. Outer scaling (figure 5(b)) shows
that the peak positions appear with a constant
spanwise separation of 1.6h* for Re, = 1300
and 1.73h* for Re,, = 3400, implying a span-
wise scale of 3.2h* and 3.46h*. A correspond-
ing negative peak is found at about 1.83h* in
Komminaho et al (1996) (their figure 10)for the
centreline spanwise two-point correlation. This
is confirmed by the similarity of contour plots
of the fluctuating streamwise velocity in the
channel central region, as shown in figure 6 for
Couette flow case D.

Pre-multiplied energy spectra ¢ = k x E(k)
are shown in figure 8 for Poiseuille flow. Peaks
are found at the same positions in wall units,
for different Reynolds numbers, at A\j = 108
and A} = 1080 for near-wall positions y* < 15.
Further away from the wall, the peak wave-
lengths increase with wall distance. Another
peak is found at A} = 400 ~ 500 at the
higher Reynolds number. Pre-multiplied en-
ergy spectra of Couette flow are shown in figure
9: The peaks at lowest A\ appear at A} = 118
and A} = 890, which is consistent with the
near wall structures of Poiseuille flow. A peak
in the spanwise pre-multiplied spectra appears
at A\, = 4 for both Reynolds number cases,
which is comparable with the results from the
two-point correlation functions. In the stream-
wise direction, a secondary peak appears at
Az = 38.4 for Re, = 1300 and A\, = 16 for
Re,, = 3400, which correspond to A} = 3150
and A} = 2990. This suggests the large struc-
ture scales in wall units in the streamwise
direction and in outer variables in the span-
wise direction. The streamwise pre-multiplied
energy spectra have a trend to become flat-
ter at the higher Reynolds number, between
A} = 1000 ~ 3000, away from the wall. The
energy spectra of the high Reynolds number
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Couette flow are shown in figure 7 for differ-
ent wall-normal positions, with a -1 slope for
comparison. No clear evidence for k=1 region
is found from these simulations.

SUMMARY

Direct numerical simulations of turbulent
plane Poiseuille and Couette flow have been
carried out at different Reynolds numbers in
very large computational domains. Statistics
have been compared with available data, and
energy budgets give satisfactory balances. The
spanwise scale of large structures in Poiseuille
flow collapses with a new outer scaling. The
spanwise large structures of Couette flow scale
with channel width and have a constant value
in the central region. However in the stream-
wise direction, the large structures scale with
wall units with A\]" about 3000.
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Figure 1: T'wo-point correlations of Poiseuille flow.
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Figure 2: Two-point correlations of Couette flow.
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Figure 9: Pre-multiplied energy spectra of Couette flow
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