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ABSTRACT

A second-order accurate finite difference dis-
cretization of the incompressible Navier-Stokes
is presented that discretely conserves mass,
momentum, and kinetic energy (in the invis-
cid limit) in space and time. The method
is thus completely free of numerical dissipa-
tion and potentially well suited for the direct
numerical simulation (DNS) or large-eddy sim-
ulation (LES) of turbulent flow. The method
uses a staggered arrangement of velocity and
pressure on a structured Cartesian grid, and
retains its discrete conservation properties for
both uniform and non-uniform grid spacing.
The predicted conservation properties are con-
firmed by inviscid simulations on both uniform
and non-uniform grids. The suitability of the
method for DNS is demonstrated by repeat-
ing the turbulent channel flow simulations of
Choi and Moin (1994), where the effect of
computational time step on the computed tur-
bulence was investigated. Using the present
fully-conservative scheme, turbulent flow solu-
tions were achieved for all computational time
steps investigated (At = Atu?/v = 0.4,
0.8, 1.6, and 3.2). Little variation in statis-
tical turbulence quantities was observed up to
AtT = 1.6. The present results differ signifi-
cantly from those reported by Choi and Moin,
who observed significant discrepancies in the
turbulence statistics above AtT = 0.4, and the
complete re-laminarization of the flow at and
above Att = 1.6.

INTRODUCTION

The DNS and LES of turbulent flow require
accurate numerical methods to resolve the wide
range of spatial and temporal scales inherent
to turbulence. Experience has shown that it is
not only the order of accuracy of the discrete
approximations that determines the overall ac-
curacy of a given method. Of equal or perhaps
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even greater importance are the discrete con-
servation properties of the method. Numerical
schemes with good discrete conservation prop-
erties in terms of mass, momentum, and kinetic
energy have been shown to produce superior re-
sults when compared to their non-conservative
counterparts (Mittal and Moin 1997).

In a recent investigation, Morinishi et
al. (1998) analyzed several finite-difference
schemes for their conservation properties, and
derived discretely conservative fourth-order
schemes for uniform meshes. The schemes
were extended to non-uniform meshes by Vasi-
lyev (2000), although the simultaneous dis-
crete conservation of mass, momentum, and
kinetic energy was not possible. Only schemes
that discretely conserved mass and momentum
but not kinetic energy, or discretely conserved
mass and kinetic energy, but not momentum
could be developed. This is true even for
second-order accurate schemes on non-uniform
meshes. Vasilyev identified the source of the
non-conservation as the commutation error be-
tween the discrete differencing and averaging
operators on the non-uniform mesh.

The concept of discrete conservation can
be applied to time as well as space. Morin-
ishi et al. did not, however, consider dis-
crete conservation in time as an analytical re-
quirement for a proper set of discretization
equations. In the analyses of both Morinishi
et al. and Vasilyev, time-advancement was
accomplished by a third-order Runge-Kutta
time-stepping method. The authors justified
the non-conservation by observing that the
associated errors appeared to be dissipative,
and decreased with the cube of the compu-
tational time step. The recent work of Perot
(2000) on two-dimensional unstructured stag-
gered schemes extends the discrete conserva-
tion analysis to include time.

The objective of the present work is to de-
velop a second-order accurate finite difference



scheme for structured Cartesian meshes that
discretely conserves mass, momentum, and ki-
netic energy in both space and time, and then
test its suitability for DNS.

NUMERICAL METHOD

The numerical method of the present contri-
bution is based on a second-order accurate dis-
cretization of the incompressible Navier-Stokes
equations for structured Cartesian meshes with
non-uniform spacing and a staggered arrange-
ment of velocity and pressure. In the fol-
lowing subsections, the staggered variable ar-
rangement is described in both space and time,
several discrete averaging operators are in-
troduced, and the conservative discretization
equations are presented and analyzed. We also
briefly describe an efficient solution technique
for the resulting fully-implicit, non-linear sys-
tem.

Staggered Variable Arrangement

. The staggered arrangement of velocity and
pressure has the advantage of ensuring strong
coupling between velocity and pressure with-
out requiring special interpolation techniques.
Staggering also appears necessary to produce
discrete methods with good conservation prop-
erties, and as such forms the basis of the
present scheme.

On the staggered grid, pressure p is stored
at the control volume (CV) centers and de-
noted by the integer subscripts [4,7,k]. The
Cartesian velocity components u, v, and w are
stored at the center of the east, north, and top
CV faces respectively. Their staggered loca-
tion relative to the CV center is denoted by an
appropriate half-index shift, as shown in Fig.
la.

Vasilyev points out that, on non-uniform
meshes, the locations of the velocity and pres-
sure points are somewhat ambiguous: they can
be determined as the geometric volume and
face centers in either physical or computational
space. In the present work we choose physical
space, and define the mesh in terms of the face
locations. For example, the west face of the
CV at [4, j, k] is at z;_1 /5, and the east face at
Z;y1/2- The z-location of the cell center can
then be calculated as the simple average of the
adjacent face coordinates. The y and z direc-
tions are handled similarly.

Because the present work also considers con-
servation in time, we append the additional
index n to all discrete variables to denote their
time level. Fig. 1b illustrates how the veloc-
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Figure 1: Staggered variable arrangement in a) space and b)
space/time.

ity and pressure locations are also staggered in
time. We adopt the convention that the new
velocity values in any time step are at time
level t,+1 and the previous values at ¢,. Pres-
sure is then located at the mid-point between
these time levels, ¢, /5.

Discrete Operators

There are a variety of discretization tech-
niques available for developing discrete approx-
imations to a set of governing partial differen-
tial equations such as the Navier-Stokes equa-
tions. The finite volume method would seem
a logical choice in this case because it is in-
herently conservative. A conservative finite
volume discretization of momentum will not,
however, guarantee conservation of kinetic en-
ergy. Because the discrete system is already
fully defined through the mass and momen-
tum discretizations, discrete conservation of
kinetic energy depends implicitly on the dis-
crete operators selected and the order they are
applied. In the present work we use the finite
difference method to develop the discretization
equations, mainly because of the mathemati-
cal tools for discrete conservation analysis that
have been developed to date.

Morinishi et al. (1998) introduced several
discrete operators to investigate the conser-
vation properties of various finite difference



schemes. Extending the notation of Morinishi
to include time, the following discrete differ-
encing operator is defined for structured Carte-
sian grids with non-uniform spacing:

519 _ Pk~ Paph )

kS i3,k Tity1/2 — Ti—1/2

In the above definition, ¢ represents a dis-
crete variable and [4, 7, k, n| its associated mesh
indices in the z, y, z, and t directions respec-
tively. Although the stencil size used through-
out the present analysis is always 1 (indicated
by the “1” subscript), it is retained for con-
sistency with the more general Morinishi def-
initions. Discrete operators in the y, z (alter-
natively z9, z3) and ¢ directions are similarly
defined.

Using this differencing operator, a finite dif-
ference equation is said to discretely conserve ¢
in space and time if it can be shown to have the
following form (Morinishi 1998, Perot 2000):

g | aF;i(¢) _
01t + (51:L'j =0 2)

F; (¢) is a discrete approximation for the flux
of ¢ (its exact form is not important here),
and subscripts represent Cartesian tensor no-
tation with summation implied when repeated
(not to be confused with the mesh indices). In
addition to the discrete differencing operator
defined by Eq. (1), the following averaging op-
erators will be required to develop and analyze
the conservative discretization:
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In the above definitions, ¢ and 1 represent
discrete variables that may be cell-centered or
staggered, and [¢, j, k,n] are the associated in-
dices in the z, y, 2z, and ¢ directions respec-
tively. Discrete operators in the y, z and ¢
directions are similarly defined.

. Unfortunately, kinetic energy conservation
is not possible on non-uniform meshes when
only these operators are used to discretize the
incompressible Navier-Stokes equations. As
pointed out by Vasilyev (2000), the violation
in conservation is related to the commutation
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error between the discrete differencing and av-
eraging operators. To produce conservative
schemes on non-uniform meshes, it is necessary
to introduce the following weighted averaging
operators:
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where the weights a and b are defined:

0 = Ti— Ti—1/2 (7)
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b — Tit1/2 — Zi (8)
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Note that, on uniform meshes, both of these
averaging operators reduce to the uniform av-
eraging operator of Eq. (3). Also note that,
when evaluated at the cell-center locations,
both of these averaging operators are the same
as the uniform averaging operator of Eq. (3),
even on non-uniform meshes. This is a result
of our definition of cell centers as the geomet-
ric center between face locations in physical
space. When evaluated at the staggered loca-
tions, however, these two operators have quite
different interpretations. Eq. (5) is simply the
standard linear interpolation. In Eq. (6) the
weights are reversed, and it can be thought of
as a volume-weighted average.

Discretization Equations

Using the discrete operators defined previ-
ously, the discretized incompressible Navier-
Stokes equations are now presented. The con-
tinuity equation is evaluated at the mesh loca-
tion [, 7, k, n+1] using the following discretiza-
tion:

d1u;

= 9
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The z, y, and z components of the mo-
mentum equation are evaluated at the stag-
gered mesh locations [i + 1/2,7,k,n + 1/2],
[4,7+1/2,k,n+1/2], and [1,7,k+1/2,n+1/2]
respectively using the following discretization:
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The viscous shear stress is calculated using the
following;:
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Clearly both the mass and momentum equa-
tions are in the discrete form of Eq. (2), and
thus the scheme will discretely conserve mass
and momentum in space and time.

As pointed out by Morinishi, local kinetic
energy cannot be defined unambiguously on
the staggered grid because the velocity com-
ponents are stored at different locations. The
kinetic energy norm conserved by the present
system requires the discrete kinetic energy
equation to be developed about the mesh loca-
tion [4, j, k,n+1/2]. The vector dot product of
the velocity with the momentum equation (10)
produces the kinetic energy equation which,
including the appropriate discrete 2nd-order
interpolations, takes the form
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Note that the viscous terms have been omitted.
Expanding Eq. (13), each of the three resulting
terms can be rearranged as follows:
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Because the discrete continuity equation is
identically zero, the kinetic energy equation
also takes the discrete form of equation (2),
and thus the scheme discretely conserves ki-
netic energy in space and time. The conserved
norm can be taken from the time term:

K =wu 2" (20)
and evaluated at the mesh location [i, 7, k,n]
or [i7j7k’n + 1]'

Solution Procedure

The fully-implicit, non-linear system of
equations resulting from this choice of dis-
cretization can be quite stiff, particularly on
the highly stretched grids typical of LES and
DNS of wall-bounded shear flows. In the
present work, the system is solved iteratively at
each time step using Newton linearization, and
algebraic multigrid with smoothing based on
the Symmetric Coupled Gauss-Siedel method
of Vanka (1986). The system’s stiffness is han-
dled by coarsening preferentially in the direc-
tion of greatest coefficient strength, a multigrid
technique referred to as semi-coarsening (Wes-
seling 1991). With the judicious selection of
coarse grids, it was possible to reduce the max-
imum residual by 6 orders of magnitude with
about 50 workunits per time step (where 1
workunit is equivalent to one smoothing sweep
through the finest grid). Although relatively
expensive per time step when compared to
other DNS/LES solution methods, the present
fully-implicit system is numerically stable for
any choice of computational time step, and
the discrete conservation properties ensure the
method is free from numerical dissipation.

SIMULATIONS IN A PERIODIC BOX

To test the predicted conservation proper-
ties of the method, inviscid simulations were
carried out in 1 x 1 x 1 periodic boxes with
both uniform and non-uniform grid spacing.
The simulations were initialized with a random
solenoidal velocity field, and integrated ahead
in time with finite viscosity. At some point the
viscosity was set to zero and the equations were
integrated further ahead in time, monitoring
the total momentum and kinetic energy. On
both the uniform and non-uniform grids, both
quantities were conserved to machine accuracy,
confirming the predicted conservation proper-
ties of the method.
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Fig. 2 plots the time history of the total
kinetic energy for one simulation carried out on
a 643 uniform grid. During the initial viscous
part of the simulation (0 < ¢ < 3), the total
kinetic energy is seen to decay rapidly due to
viscous dissipation.
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Figure 2: Time history of total kinetic energy for 643 peri-
odic box simulation. Initial viscosity ¥ = 1/2000 set to zero
at t = 3.

At t = 3 the viscosity was set to zero. As
Fig. 2 shows, the kinetic energy remained
precisely constant thereafter. It is interesting
to note how the energy redistributes itself in
wave space in the absence of viscosity. Fig.
3 shows the spatial energy spectra calculated
at times ¢t = 3, 4, 5, 8, and 40. At t = 3,
the spectra shows a strong drop off at higher
wave numbers, and little or no energy pileup
at the highest wave number. The immediate
loss of viscous dissipation causes the energy at
the highest wave numbers to increase rapidly.
The net energy transfer is out of the low-
est wave numbers, although at a much slower
rate. Eventually, the distribution stabilizes at
a point where the energy is equally distributed
in wave space - a condition of maximum en-
tropy for this isolated numerical system!

DNS OF PLANE CHANNEL FLOW

The first rigorous investigation of the ef-
fect of computational time step on the DNS
of turbulent flow was performed relatively re-
cently by Choi and Moin (1994). They used a
fully implicit scheme to conclude that the op-
timal computational time step for the DNS of
turbulent channel flow was, expressed in wall
units, about AtT = Atu2/v = 0.4. For time
steps larger than 0.4, their numerical experi-
ments showed the calculated turbulence statis-
tics to vary significantly from their time-step-
independent values. Further, they observed
the turbulence to completely decay to a lam-
inar state for time steps of 1.6 or greater. In
conclusion, they suggested the following phys-
ical explanation for their observations: “tur-
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Figure 3: Computed spatial energy spectra from 642 periodic
box during the inviscid part of simulation illustrating the
eventual equi-distribution of energy amongst wave numbers.
Times refer to Fig. 2.

bulence fluctuations can only be sustained if
the computational time step is appreciably less
than the Kolmogorov time scale”. They esti-
mated the Kolmogorov time scale in the sub-
layer to be about 2.4 in wall units.

Using the fully conservative method of the
present work, the identical investigation was
repeated. Following Choi and Moin, the chan-
nel domain and grid distribution was taken
from the minimum flow unit of Jiminez and
Moin (1991), with dimensions 276 X 2§ X
0.2897¢ in the streamwise, wall-normal, and
spanwise directions respectively. The mesh size
(in terms of cells) was 16 x 128 x 32, with
uniform spacing in both the streamwise and
spanwise directions, and a hyperbolic tangent
distribution in the wall normal direction, as
described by Jimenez and Moin. All compu-
tations were performed at Reynolds number
based on bulk velocity Re, = Upd/v = 2800,
which corresponds to a Reynolds number based
on wall-shear velocity of Re, = u.d/v =~ 190.

Fig. 4 compares the calculated rms ve-
locity fluctuations for four of the time steps
investigated: At = 0.4, 0.8, 1.6, and 3.2.
In terms of CFL number, these computa-
tional time steps correspond approximately to
CFL = maz (|u;| /Az;)) = 1, 2, 4, and 8.
Little variation in statistical turbulence quan-
tities was observed up to At* = 1.6. Even at
AtT = 3.2, the variation is only a few percent,
substantial smaller than that observed by Choi
and Moin. Fig. 5 compares the Reynolds shear
stress for the same computational time steps.

Even for the largest computational time



0 20 40 60 80

0 20 40 60 80

yt

Figure 4: Variation of root-mean-square velocity fluctua-
tions with the computational time step: Attt =0.4;
=== Att =0.8; —-— Att =16 ; —-— Att =3.2.

Figure 5: Variation of Reynolds shear stress with the com-
putational time step: Att =0.4; ———— Att =0.8;
—-— Att =16;—--— Att =3.2.

steps investigated of AtT = 5.0, correspond-
ing to CFL =~ 12, the flow remained turbulent
with an approximately correct statistical be-
havior. The present results suggest that the
observations of Choi and Moin may have been
a result of dissipative numerical errors associ-
ated with their fractional step time advance-
ment scheme, rather than the more physical
explanation they proposed.

SUMMARY

A second-order accurate finite difference dis-
cretization of the incompressible Navier-Stokes
has been presented that discretely conserves
mass, momentum, and kinetic energy (in the
inviscid limit) in both space and time. The
method uses a staggered arrangement of ve-
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locity and pressure on a structured Cartesian
grid, and retains its discrete conservation prop-
erties for both uniform and non-uniform grid
spacing. The predicted conservation proper-
ties have been confirmed by inviscid simula-
tions on both uniform and non-uniform grids.
The suitability of the method for DNS has
been demonstrated by repeating the turbu-
lent channel flow simulations of Choi and Moin
(1994), where the effect of computational time
step on the computed turbulence was inves-
tigated. Using the present fully-conservative
scheme, turbulent flow solutions were achieved
for all computational time steps investigated
(AtT = Atu2/v = 0.4, 0.8, 1.6, and 3.2).
Little variation in statistical turbulence quan-
tities was observed up to AtT = 1.6, cor-
responding to CFL = 4. The present re-
sults differ significantly from those reported
by Choi and Moin, and suggest that the cause
of their observed sensitivity to computational
time step may have been dissipative numeri-
cal errors associated with their fractional step
time-advancement scheme, rather than the
more physical explanation they proposed.
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