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ABSTRACT

Capability of the explicit algebraic stress
models to predict homogeneous and inhomo-
geneous shear flows are examined. The impor-
tance of the explicit solution of the produc-
tion to dissipation ratio is first highlighted by
examining the algebraic stress models perfor-
mance at purely irrotational strain conditions.
Turbulent recirculating flows within sudden ex-
panding pipes are further simulated with ex-
plicit algebraic stress model and anisotropic
eddy viscosity model. Both models show a bet-
ter stress-strain interaction, showing a reason-
able shear layer development. The anisotropic
stress field are also accurately predicted by the
models, though the anisotropic eddy viscosity
model of Craft et al. returns marginally better
results.

INTRODUCTION

Separation and reattachment are commonly
found phenomena in engineering flows, such as
aerofoil with separation bubbles, diffuser and
combustors. The separation with a slow pres-
sure recovery can cause significant loss of lift
of the aerofoil, however on the other hand,
the presence of the recirculation region may
help to stabilize the combustion zone within
the combustors. It is, therefore, essential to
understand and to predict correctly these phe-
nomena. The sudden-expanding pipe provides
the simplest geometry to study the phenomena
and this has been the focus of research both ex-
perimentally and numerically.

The dominant features of the flow are the
separation at the expansion, the shear layer
with a slight streamline curvature, reattach-
ment of the shear layer and the recovery of the
flow. The complex physical features, despite
its geometric simplicity, serves the purposes of
testing the performance of the turbulence mod-
els. It is widely accepted that the linear eddy-
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viscosity type of turbulence models can not,
without modifications, account for the stream-
line curvature effect. Therefore, the natu-
ral route is to apply Second-Moment Closures
in predicting the recirculating flows. How-
ever, the extra computational cost incurred
due to the solution of the transport equations
of the Reynolds stresses prevents the model
from being widely used, especially in three-
dimensional environments.

One alternative is to adopt a non-linear
stress and strain relationship of the Reynolds
stresses.This can be achieved by assuming that
the Reynolds stresses are taken to be non-
linear function of the mean velocity gradients.
However, there are many approaches in deriv-
ing the coeflicients and determining the order
of the tensorially independent groups. Most
of the models are formulated at the quadratic
level, and few adopt cubic stress and strain
relationships. These models are termed by
Gatski and Speziale (1993) as the anisotropic
eddy viscosity models, because these formula-
tions have no direct relation with the Reynolds
stress models.

Based on the algebraic stress model (ASM)
of Rodi (1972) and with the aid of the Caley-
Hamilton theorem, Pope (1975) proposed that
the most general form of anisotropy tensor
can be expressed in terms of the mean strain
and vorticity tensors of ten tensorially inde-
pendent groups (up to fifth order) and coeffi-
cients. This was motivated by the fact that
the implementations of the algebraic stress
models are not straightforward, because the
stress-strain relation is not explicit. The ex-
plicit algebraic stress models are attractive,
because the Reynolds stresses are related to
the mean velocity gradients implicitly through
the Reynolds stress closures.

Gatski and Speziale (1993) further extended
Pope’s formulation to three-dimensional tur-
bulent flows in non-inertial frame. One draw-



back of the above model is the adoption of
the equilibrium value of the ratio of produc-
tion to dissipation (P/e=1.89) in the model
coefficients. This, as pointed out by Girimaji
(1996), is internally inconsistent. In order to
account for the turbulent flows with localized
strain rates that are large, the Gatski and
Speziale’s explicit algebraic stress model has
been regularised. Girimaji has indicated that
the production to dissipation ratio can in fact
be determined analytically, and this has poten-
tial benefits in computing complex flows with
strong shear layers.

Therefore, the focus of the study is to ex-
amine the importance of the explicit solution
of the P/e ratio at large strain rates for ex-
plicit algebraic stress models. Attention will
be focusing on the model performance in ho-
mogenous flow under rotational and irrota-
tional strains. The capability of the explicit
algebraic stress model and anisotropic eddy
viscosity model to predict inhomogeneous flow
within the sudden expanding pipe geometry is
also investigated.

THE COMPUTATIONAL MODEL

The Governing Equations

The behaviour of the flow is in general gov-
erned by the fundamental principles of classical
mechanics expressing the conservation of mass
and momentum. The time-averaged equations
for high-Reynolds-number flow, may be de-
scribed by the equations (in cartesian tensor):
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where %;u; is turbulent flux arising from the
time-averaging process. The tensorial form of
the momentum equation represents the U and
V momentum solved.

Turbulence models

The adopted anisotropic eddy viscosity
model of Craft et al.(1993) can be expressed
as,
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where Cl = —0.1, Cg = 0.1, C3 = 0.26, 04 =
-1, Cs = —0.1, C7 = 0.1.
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Following Gastki and Speziale(1993), the
two-dimensional algebraic stress model can be
expressed as,
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In the present study, the linear pressure-
strain model adopted is the Speziale, Sarkar
and Gatski (1991) model (SSG). The model
coefficients are C; = 6.8, Co = 0.36, C5 = 1.25
and C4 = 0.4.

It was indicated by Gatski and Speziale
(1993) that for sufficiently large strain rates
M1, singularities can occur. Therefore, the
regularised model is proposed by Gatski and
Speziale, i.e.
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This new formulation ensures the coefficient to
be positive. However, there remains unknown
ratio of P/e. To propose an explicit ASM, the
equilibrium value of P/e = 1.89 is adopted by
Gatski and Speziale (1993).

An analytic solution of P/e can be obtained
by multiplying equation 4 with S}, i.e.
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and the above equation produces a cubic or-
der polynomial for g, which is function of P/e.
The general solution of this equation was ob-
tained by Girimaji (1996) and is adopted here.
It should be pointed out that by adopting
this approach, no regularization procedure is
needed, because the approach produces non-
singular behaviour of equation 4 (Girimaji,
1996, Wallin and Johansson, 2000).
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Figure 1: Variation of anisotropy at different strain rate-
homogeneous shear.
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Figure 2: Anisotropy at different strain rate-axi-symmetric
contraction and expansion(SSG model).

NUMERICAL ALGORITHM

This scheme solves discretised versions of
all equations on a staggered finite-volume ar-
rangement. The principle of mass-flux con-
tinuity is imposed indirectly via the solution
of pressure-correction equations according to
the SIMPLE algorithm (Patankar, 1980). The
flow-property values at the volume faces con-
tained in the convective fluxes which arise from
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Figure 3: Anisotropy at different strain rate-axi-symmetric
contraction and expansion(Craft et al. model).

the finite-volume integration process are ap-
proximated by the QUICK scheme (Leonard,
1979).

The numerical meshes, 120x100 and 90x60,
are non-uniform both in the x and y directions.
Initial tests on the influences of the grid density
revealed that the differences between the two
meshes were small. Therefore, in subsequent
computations, the mesh 90x60 will be adopted.

RESULTS

The performance of the model is first ex-
amined by applying to the homogeneous shear
flow in equilibrium state at different strain

rates
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The anisotropy a;; is defined as w;u; /k—2/30;;.
The predicted results are contrasted with DNS
data (Roger and Moin, 1987) and measure-
ments (Champagne et al., 1970, Harris et al.,
1977, Tavoularis and Corrsin, S., 1981). Three
models are contrasted here, namely SSG, SSG-
GS and Craft et al.. The SSG-GS is the reg-
ularised explicit ASM model by Gatski and
Speziale (shown in equation 5), while the SSG
is the fully explicit ASM, i.e. the P/e is ob-
tained by equation 6. As shown in Figure 1, it
can be clearly seen that all the models perform
reasonably well, though at higher and lower
strain rates the models behave differently.

Further, attention is directed to the
homogeneous turbulence field induced by
the irrotational strains under axi-symmetric



contraction(A-C)
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and axi-symmetric expansion(A-E).
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Here, the results by the the fully explicit ASM
and Craft et al.’s anisotropic eddy viscosity
model are shown in Figures 2 and 3. The
SSG-GS is not included because it produces
unrealistic stress field. This is apparent by
examining the regularised model, as shown in
equation 5. At high irrotational strain rates
(2 = 0), the coefficient becomes constant, and
the stress field is then proportional to S;*J For
constant P/e ratio, this implies that the Sj;
is again proportional to the strain rate, and
hence so is the case for the stress field. For the
fully explicit ASM, the P/e ratio increases in
tandem with strain rates, and hence produces
a bounded stress field. Another advantage of
the explicit solution of the P/e ratio is that the
P/e ratio is always positive and the coeflicient
for the S;; in the stress and strain relation is
always negative, which also ensures stable so-
lution numerically.

For the axi-symmetric contraction case, the
SSG model agrees well with the DNS data.
However, for the axi-symmetric expansion
case, the model produces a too high level of
anisotropy at higher strain rates. The Craft et
al.’s model agrees perfectly with DNS data for
the axi-symmetric contraction case, but pro-
duces the wrong trend under the axi-symmetric
expansion condition. It should be pointed out
that a revised model proposed by Craft et al.
(1997) by including the transport equation for
the second invariant, can deliver much better
results.

Next the computations are applied to a sim-
ple dump combustor with the expansion ratio
of 1.5, as shown in Figure 4. The inlet centre-
line velocity was maintained at 19.2 m/s, corre-
sponding to the Reynolds number of 1.25z10°.
The inlet of the computational domain was
located at X/H=0.38, which is the first down-
stream position at which measurements are
available. H is the difference of the radius of
the expanding and inlet pipe. The predicted
results are contrasted with the measurements
of Ahmed and Nejad (1992).
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Figure 4: Geometry.

Figure 5 shows the predicted axial velocity
distributions at four selected locations. It can
be clearly seen that the linear k—e model shows
a more diffusive profile. The performance of
the SSG and the anisotropic models shows the
best results, where the shear layer is correctly
predicted. The performance of the models can
be further ascertained by reference to the shear
stress distributions, shown in Figure 6. The
correct development of the shear layer is the
reflection of the accurate shear stress level pre-
dicted. The elevated level of diffusive cross
stream transport of the k — € prediction can
be seen from the wo at X/H=2. The perfor-
mance of the anisotropic model is marginally
better than the explicit algebraic stress model.
The level of the turbulent kinetic energy is re-
lated to its generation term, where for simple
shear flow is P, ~ —wwoU/dy, and is shown in
Figure 7.

Figures 8 to 10 show the predicted turbu-
lence intensity profiles. As expected, the linear
model indicates an isotropic stress field. Both
SSG ASM and the Craft et al.’s model show a
better anisotropic stress field.

CONCLUSIONS

Capability of the explicit algebraic stress
models to predict homogeneous and inhomoge-
neous shear flows are examined in the present
study. The importance of the explicit solution
of the production to dissipation ratio is high-
lighted by examining the model performance
at purely irrotational strain conditions. The
regularised ASM was shown to produce unreal-
istic stress field under large irrotational strain,
whereas both the explicit ASM and anisotropic
eddy viscosity model remains bounded. Turbu-
lent recirculating flows within sudden expand-
ing pipes are further simulated with explicit
algebraic stress model and anisotropic eddy
viscosity model. Both models show a better
stress-strain interaction, showing a reasonable
shear layer development. The correct devel-
opment of the shear layer is the reflection of
the accurate shear stress level predicted. The
anisotropic stress field are also accurately pre-
dicted by the models, though the Craft et al.’s
model returns marginally better results.
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Figure 6: Shear stress.
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