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ABSTRACT

Different POD approaches are investigated
in a priori tests for turbulent channel flow. In
addition to the classical POD decomposition,
in which the modes are computed in order to
have an optimal representation of the L? norm
of velocity, POD bases are also obtained by
maximizing either the H! norm of velocity or
the L? norm of vorticity. The velocity fields re-
constructed by considering an increasing num-
ber of POD modes are compared with those
obtained in direct numerical simulation. The
accuracy in reproducing statistical moments
and near-wall structures and events is evalu-
ated. The physical significance of the POD
bases generated in the different approaches is
investigated.

INTRODUCTION

In most of the flows of industrial or envi-
ronmental interest, it is impossible to resolve
all the turbulence scales, because of the huge
amount of unknowns to be computed. Thus,
a challenging problem in numerical simulation
of turbulent flows is to devise reduced order
models. Such models should imply the com-
putation of a significantly reduced number of
unknowns and yet they should reproduce the
dynamics of the flow accurately enough. In a
broad sense, Reynolds-averaged Navier-Stokes
and large-eddy simulations, widely used for
turbulent flows, can be considered as reduced
order models. However, these approaches lead
to simulations still significantly too complex to
be used in applications which involve several
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flow evaluations, such as control or optimiza-
tion. In this context, low-order models that
allow the computational complexity to be fur-
ther reduced must be used. The basic idea of a
class of such methods is to project the solution
on a finite-dimension space, characterized by a
basis; the number of degrees of freedom is then

-reduced by considering only a subspace, i.e. a

limited number of basis functions.

One of these methods is the proper orthog-
onal decomposition (POD), in which a set of
empirical basis functions is constructed and a
Galerkin projection in the POD-function space
is employed to derive a simplified dynamical
system in the form of a set of nonlinear or-
dinary differential equations. In the classical
approach the POD modes are computed in or-
der to have an optimal representation of the
solution in the norm of the Hilbert space L?
(Lumley, 1967), starting from a data set of
flow realizations (snapshots) obtained either
through direct numerical simulation or exper-
iments. In order to obtain a low-order model,
only the "most important” modes are con-
sidered, which in this classical approach may
be considered as those mainly contributing to
the flow energy. POD techniques have largely
been used to analyze signals and/or fields ob-
tained in experiments and simulations for tur-
bulent flows; applications to actual simulation
of turbulent flows are still scarce (e.g. Podvin
and Lumley (1998) and Omurtag and Sirovich
(1999)).

A fundamental aspect to obtain a good
compromise between computational complex-



ity and accuracy is the choice of a relevant
basis from the physical point of view, in or-
der to be able to identify suitable criteria for
the choice of the retained modes. If the flow is
characterized by one or more homogeneous di-
rections, each POD mode may be assumed to
be a Fourier mode in the homogeneous direc-
tion(s). For instance, in turbulent channel flow
simulations by Omurtag and Sirovich (1999)
the velocity field is represented by a truncated
Fourier series in the streamwise and spanwise
directions, while POD is used to determine the
inhomogeneous basis in the wall-normal direc-
tion. In data analysis, this approach can be
seen as the application of an inhomogeneous fil-
tering (Adrian et al., 2000). It has been shown
by Omurtag and Sirovich (1999) that many de-
grees of freedom must be retained to obtain an
acceptable prediction of mean flow field and
second order statistical moments. Moreover,
the generation of a POD basis consistent with
the Fourier representation of velocity in the ho-
mogeneous directions clearly requires to use a
wide number of snapshots, and, thus, implies
a significant computational cost itself.

In the present paper, we consider POD bases
obtained for turbulent channel flow without
a priori assuming a Fourier representation in
the homogeneous directions and considering a
more limited number of snapshots. In this
view, POD decomposition is not aimed to ex-
tract the most significant information from a
large data set, but rather to reorganize a lim-
ited amount of data in accordance with a given
criterion. In the perspective of the applica-
tion to actual dynamic simulations, it is useful
to investigate the physical meanings of such a
decomposition by a priori tests. This type of
tests has been used for large-eddy simulation
to understand the effects of small scale filter-
ing. In the same way, the comparison between
reconstructed POD and DNS fields can give
important indications of which kind of physical
information is contained in each basis element.
This is useful in the perspective of the appli-
cation not only to the simulation, but also to
the analysis of turbulent flow structure. More-
over, we wish to investigate if, in this context
(i.e. a limited number of snapshots), POD
approaches different from the classical one pro-
posed by Lumley (1967) could be better suited
for turbulent wall flows. First, we explore the
possibility of using a different norm, namely
the norm in the Sobolev space H!, which also
accounts for the gradients of the fluid dynamic
variables (see also Beux et al., 2000). Second,

we propose a POD approach based on vorticity,
which gives POD modes ordered in accordance
with their contribution to enstrophy.

POD FORMULATION BASED ON THE H!
NORM OF VELOCITY

Let us denote the velocity vector of the snap-
shot p by UP = (u},u},u8)T; the scalar prod-
uct between two snapshots, UP and U?, in H]}
is defined as:

uy ui
<Up,Uq)HE1:< Ug y Ug >+
ug ug
i\ (24 )
0z Oz
] i < oub ’ oud >
o Oz, 0z
oul oud
0Ty Oz
where < -,- > denotes the classical scalar

product in L2. Clearly, if € is zero, the L?
scalar product is recovered from Eq. (1), while
for ¢ = 1 we obtain the scalar product in
the Sobolev space H!. Both velocity deriva-
tives and the L? scalar product are computed
with spectral accuracy, by using the Fourier-
Chebyshev representation of U. We refer to
Beux et al. (2000) for details. Then, ns; modes
can be generated by proper orthogonal decom-
position:

by = S alUt @)
q=1

which are mutually orthogonal with respect to
the scalar product in H} defined in Eq. (1).
The coefficients o} are the components of the
p-th eigenvector of the correlation matrix K:
Kij = (U, U7 gy

Since the modes ¢, are mutually orthogonal,
a generic velocity field U can be reconstructed
as follows:

where n,, is the number of the retained POD
modes. Thus, the accuracy of the POD re-
construction depends both on the number of
snapshots used ns; and on n,,. By combining
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Egs. (2) and (3), Ugr can be rewritten as fol-
lows:

j=1 g=1

Ur = i {Zaj (U,U4>Hg}¢j (4)

POD FORMULATION BASED ON VOR-
TICITY

Let wP be the vorticity field associated to
a velocity snapshot UP, n; modes can be gen-
erated by proper orthogonal decomposition of
vorticity:

b= di (5)
=1

The coefficients af are now the components of
the [-th eigenvector of the correlation matrix
between two vorticity snapshots K“: K =
(w',w?),,. As previously, both vorticity and
L? scalar product are computed with spectral
accuracy starting from the Fourier-Chebyshev
representation of U. The (¢;) are mutually or-
thogonal with respect to the scalar product in
L2, thus, wP can be expressed through the POD
basis as follows:

Ns

WP o= (P 5) e ¥ (6)

j=1
By combining Eqgs. (5) and (6), we obtain:
Ns Ns
WP = ZA?Zaé-wi (7)
j=1 =1
ns
in which A% = Za;]- (WP wl) s = )\jaé’ y Aj
being the jth eigqe:;lvalue of the correlation ma-

trix. Using now the linearity of the rotational
operator, the following equation is obtained:

Ng Ng
rot(UP) = rot (Z A?Za;Uz) (8)
Thus:
s s . .
UP =% APY aiU* + SP (9)
j=1 =1

where rot(S?) = 0. However, SP, which is a lin-
ear combination of snapshots, must satisfy the
boundary conditions of the problem, i.e. pe-
riodic and homogeneous Dirichlet conditions.
Thus, necessarily, we obtain that S? = 0.
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In conclusion, a generic velocity field U at
which corresponds the vorticity field w can be
expressed as follows:

Nm Ns

U= Z Zag (w,w?) 2 0 (10)

Ns
in which 6; = Za;-U’, and correspondingly:

— 1=1
W= Z Zag- (w,w?) 12 1P;.
j=1lg=1

Note that now the POD modes are ordered
in accordance with their contribution to en-
strophy.

RESULTS AND DISCUSSION

POD bases have been constructed starting
from flow snapshots obtained in the direct nu-
merical simulation (DNS) of turbulent channel
flow at a Reynolds number, based on the shear
velocity and half the channel depth, equal to
108. Details of the simulations can be found in
(Soldati and Banerjee, 1998).

Let us consider the POD basis generated
by using 20 snapshots and the approach based
on the maximization of the H! norm, with
€ = 0.1. The snapshots are equally spaced
in a time interval roughly corresponding to
the characteristic evolution time of a low-speed
streak. The velocity fields can be reconstructed
as in Eq. (4), by retaining a limited number
of modes (np,). The rm.s. of the three ve-
locity components and the correlation between
streamwise and normal velocity fluctuations,
obtained for different values of n,,, are com-
pared to those given by DNS in Figs. la and
1b respectively. The considered velocity field
is one among the snapshots used for POD ba-
sis generation. As expected, if only the first
mode is retained the mean flow is completely
recovered (not shown here for sake of brevity).
More surprisingly, the first mode also gives a
significant contribution to the second order sta-
tistical moments. However, it is shown in Fig.
1 that 15 modes are required to accurately re-
produce the second order statistical moments.
Same results have been obtained for flow fields
not belonging to the set of snapshots. To bet-
ter understand those results, it is interesting to
compare near wall structures and events sur-
viving in POD reconstructed fields to those
present in DNS. This comparison is made for
high- and low-speed streaks in Fig. 2 for the
same flow field as in Fig. 1. Although signif-
icant fluctuations are present also in the first
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Figure 1: Comparison between DNS and POD reconstructed
fields. a) R.m.s. of the velocity components; b) w’'w’ corre-
lation. z4 denotes the distance from the wall in the vertical
direction, expressed in wall units.

POD mode, which explain its contribution to
second order statistical moments, streaks are
not captured. However, a rather good rep-
resentation is already obtained with 5 POD
modes. The same analysis can be made for co-
herent vorticity. Fig. 3 shows a vertical cut of
quasi-streamwise vortical structures present in
velocity fields reconstructed with different val-
ues of n,, and in DNS. The method proposed
by Chong et al. (1990) has been employed for
the identification of the quasi-streamwise vor-
tices. No coherent vorticity is captured in the
first mode (not shown here). It appears from
Fig. 3 that at least 15 POD modes are needed
to accurately reconstruct vortical structures.
As far as sweep and ejections are concerned
(not shown here for sake of brevity), an inter-
mediate behavior is observed; indeed, they are
well captured with 10 POD modes.

Let us analyze now the spectral behavior of
the POD modes. Fig. 4 shows the two dimen-
sional energy spectra of different POD modes
on the horizontal plane at the center of the
channel. As discussed in the Introduction, if a
large number of snapshots is used to

generate the POD basis, the POD modes

Figure 2: Streaks: iso-contours of u' = +0.2U,, where U is
the mean streamwise velocity at the center of the channel.
Reconstructed fields with: 1 (a), 5 (b), 10 (c) POD modes;
DNS (d).

should coincide with Fourier modes in the ho-
mogeneous directions. Of course, this is not
obtained in our case.

Indeed, all the POD modes contain significant

308



B alC ARV g

-

g & . ; [
» DA ﬁ'@”ﬂ S s @* i
e :‘ga-::,.q’.s v B The B9 W

CY

Figure 3: Coherent vorticity. Reconstructed fields with: 5
(a), 10 (b), 15 (c) POD modes; DNS (d).

energy on a large interval of waves numbers
in the spanwise direction. However, for each
mode, energy is mainly contained in a nar-
row band of wave numbers in the streamwise
direction, which moves from low to high wave-
number values going from the first to the last
POD modes. On homogeneous planes located
closer to the wall, the separation of wave num-
bers containing energy in the different POD
modes is less evident also in the streamwise
direction. However, it is still true that, as
the order of the mode in the POD basis is in-
creased, energy is introduced at higher wave
numbers.

Thus, it seems that, by considering an increas-
ing number of POD modes, details, or equiva-
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Figure 4: Two dimensional energy spectra on the horizontal
plane at the center of the channel. (a) 1st, (b) 9th and (c)
17th POD modes.

lently small scales, are progressively added in
the streamwise direction, while this filtering ef-
fect of the POD decomposition is not evident
in the spanwise direction.

Finally, let us compare the reconstructed
fields for the different POD approaches. The
errors in the reconstruction of near wall struc-
tures and events are shown for the different
approaches in Fig. 5 as a function of n,,. These
errors are defined as follows:

> lg(R) - g (P)
1 ierg)
er(g) = M)

(11)
max lg(P,)]

in which g represents u', u'w’ or the coher-
ent vorticity indicator by Chong et al. (1990).
Only the nodes which verify the criterion iden-
tifying the considered structures or events are



considered in the formula, i.e. the M (g) nodes
P, identified by the set of index I(g).

For the H! formulation, Fig. 5 simply sum-
marizes the information given by the visual-
izations in Figs. 2 and 3. In particular, it is
evident that a larger number of modes is re-
quired for vortical structures than for streaks
or sweeps and ejections. Except for small dif-
ferences in the accuracy of the reconstruction
of vortical structures, the behavior is prac-
tically the same for the different considered
formulations. This is due to the fact that
the POD modes obtained in the different ap-
proaches are very similar as shown, for in-
stance, in Fig. 6, in which the kinetic energy
associated to different POD modes, multiplied
by the corresponding coefficients and averaged
on homogeneous planes, is reported. For the
L? approach, in which the modes are orthonor-
mal with respect to the L? norm, this gives the
mean contribution of each mode to the flow en-
ergy. Since the bases are very similar, this is
roughly true also for the other two formula-
tions. Except for the first mode, which has an
energy profile very similar to that of the mean
channel flow, the modes are characterized by
an energy peak near the wall, that tends to
become less localized and to move towards the
center of the channel as the mode order in-
creases. Surprisingly, only slight differences are
observed between the classical and the other
considered approaches. This can be partially
justified by the fact that the POD modes ob-
tained in the L? formulation are characterized
by high shear, especially near the wall, and this
also gives a significant contribution to velocity
gradients (H! approach) and vorticity. Thus,
it seems that the POD approach based on max-
imization of enstrophy tends to give an optimal
representation mainly of vorticity generated by
shear, while the reproduction of coherent vor-
ticity remains critical. As stated in the Intro-
duction, we were interested in analyzing POD
bases generated with a limited number of snap-
shots. However, it should be verified whether
the above conclusions still hold, at least qual-
itatively, if the number of snapshots is signif-
icantly increased or a larger time interval is
considered.
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