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ABSTRACT

This article investigates the implementation
of modern control design techniques on open
shear flows using the linear complex Ginzburg-
Landau model for the cylinder wake, with
the coefficients as scaled by Roussopoulos and
Monkewitz (1996). Based on noisy measure-
ments 1.5 diameters downstream of the cylin-
der, the compensator uses a H filter to con-
struct a state estimate which, in turn, is used
to compute Ho, feedback control at the cylin-
der to drive the system perturbations to zero.
The application of such modern control rules
leads to substantially better performance than
the proportional measurement feedback pro-
posed by previous studies. Preliminary results
on the effectiveness of linear control to stabi-
lize the nonlinear Ginzburg-Landau model are
also presented.

POSITION OF THE PROBLEM

The instability and self-sustained oscillation
of the flow behind a circular cylinder is a funda-
mental yet only recently understood problem.
Due the numerous engineering consequences of
unstable bluff-body flows, the canonical prob-
lem of the instability of the cylinder wake has
been the focal point of many studies in the
past decade (see, e.g., Williamson 1996 for a
review). The possibility of controlling this in-
stability, or at least delaying the critical value
of Reynolds number characterizing its onset, is
an idea that has recently received growing at-
tention (see, e.g., Min and Choi 1999). The
growing community of flow control and the in-
terdisciplinary efforts it has accomplished in
the last few years makes it now possible to
adapt a control point of view on flow phenom-
ena (see, e.g., Bewley 2001 for survey from this
perspective). This paper will investigate the
use of linear H, control theory on a 1D model
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of the cylinder wake in order to shed some light
on some of the central unsolved issues in the
control of instabilities in open shear flows.

Open shear flow instabilities, and the major
role they play in flow transition, have been an-
alyzed in the last 15 years using the concepts

- of absolute and convective instabilities (Huerre

& Monkewitz 1990). Considering an unstable
parallel flow, the instability is called convective
if a perturbation grows while being advected
away by the mean flow and any fixed point
in the domain eventually comes back to rest
when the upstream disturbance is removed.
On the other hand, if the mean advection is
not strong enough, the instability will contam-
inate the entire system and is called absolute;
in this case, the flow perturbation remains even
if the disturbance triggering it is neutralized.
These characterizations of parallel flows can
be extended to the local analysis of slightly
non-parallel flows. Non-parallel flows are often
found to contain different regions with differ-
ent stability characteristics. Flows which are
locally convectively unstable everywhere be-
have as noise amplifiers, as they are extremely
sensitive to external disturbances, though they
are globally stable. On the other hand, flows
displaying a sufficiently large pocket of abso-
lute instability behave as oscillators (Chomaz,
Huerre & Redekopp 1988), and are found to be
dominated by a synchronized linear behavior,
termed a linear global mode. This linear tran-
sient will grow in place and eventually saturate
due to nonlinearities, leading to self-sustained
oscillations such as those in the wake of the
circular cylinder.

THE GINZBURG LANDAU MODEL

The system we will consider in this paper,
the non-parallel Ginzburg-Landau (GL) sys-
tem, is the simplest model one can construct
that displays a spatial transition from a local
convective instability to a local absolute insta-
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Figure 1: Vortex shedding control approximately modeled
by the idealized 1D system: based on noisy measurements
downstream of the cylinder, the compensator constructs a
state estimate which, in turn, is used to compute control
feedback applied at the cylinder itself.

bility. It is given by
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This equation models the wave amplitude in a
spatially extended system and has been used
successfully to model the transition of both
closed and open flows. In the case of interest
here, this equation models quantitatively the
Hopf bifurcation which takes place in the cylin-
der wake at Re = 47 and qualitatively the wake
behavior as the Reynolds number is increased
beyond this value. The present paper focuses
primarily on the control and estimation of
the linear GL equation (linearizing the system
around the solution ¢ = 0); we will also char-
acterize the efficiency of this linear control on
the global nonlinear behavior. We choose com-
plex coefficients in (1) and the dependence of
these coefficients on Reynolds number as sug-
gested by Roussopoulos and Monkewitz (1996)
in their study of the cylinder wake feedback
control problem to facilitate comparison with
the existing literature.

THE CONTROL STRATEGY

This work addresses the following ideal-
ized model problem: considering the 1D sys-
tem model (1), what stabilizing effect can be
achieved with noisy information about the sys-
tem 1.5 diameters downstream of the origin
and actuation at the origin (i.e., the cylinder
location) itself, even if the system is perturbed
by unknown external disturbances and signifi-
cant unmodeled system dynamics? The actua-
tion might be achieved in practice by rotation
or transverse oscillation of the cylinder itself;
we do not attempt to model accurately the flow
actuation in our present 1D analysis, which is
focused more on the alteration of the global
dynamics in the 1D model of the wake.

an Tg

Figure 2: Sketches on the region on the real x-axis of local
stability (light grey), convective instability (dark grey) and
absolute instability (black) of the uncontrolled GL model
for various Reynolds numbers. (a) Re = 29, onset of local
absolute instability at « = 1.24 (b) Re = 47, onset of
linear global instability, (c) Re = 235, (d) Re = 284. The
positions of the actuator zy = 0 and the sensor zs = 1.5
with respect to the instability zones are also displayed;
we seek to determine control forcing, to be applied at zy,
based on the sensor measurement, taken at xs, in order to
stabilize the global dynamics of this system.

We represent the control u as a local forcing
at x = x; on the perturbed GL model and the
measurement y of the state at x = z, in this
model such that

%%=£¢+w¢(m,t)+5(a;—$f)u(t)a (2)
y = p(as) +wy(8), (3)

As in Roussopoulos & Monkewitz (1996), we
take 5 = 0 and z5 = 1.5. Figure 2 displays the
position of both the actuator and the sensor
with respect to the local instability zones of the
uncontrolled system for a variety of Reynolds
numbers.

An appropriate discretization of the con-
tinuous GL equation leads to the standard
state-space form for the system. Taking o
as a free parameter representing the ratio of
the strength of the measurement noise to that
of the state disturbances, we write this state-
space form as

x = Ax+ B; w+ Bayu, (4)
y=Cx+ aDyw, (5)

where x is the state, u the control, and w the
disturbance vector (including both the mea-
surement noise and the state disturbances).
The computations presented in this paper have
been achieved with a Fourier collocation spec-
tral method for the spatial discretization on a
stretched grid around both the sensor and forc-
ing point to ensure localization of the sensing
and forcing. The control design applied by our
study is the linear H, control approach in-
troduced by Doyle, Glover, Khargonekar and
Francis (1989). This control methodology can
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be briefly described as the following: (1) choice
of a quadratic cost function, (2) choice of the
design parameters, and (3) computation of
the control matrices. The performance of the
closed-loop plant depends strongly on the sev-
eral decisions made at each of these steps. The
cost function J must weigh together the state
X, the control effort u, and the noise w; more-
over, since the GL operator is time invariant,
one can apply the control theory for infinite
time horizons, which leads to the following gen-
eral form for the cost function:

j:/ [x*Qx+€2u*Ru—72w*SW] dt. (6)
0

where @, R and S are positive definite matri-
ces. The Ho, control approach allows one to
compute the control u that minimizes the cost
function in the presence of the “worst-case”
disturbance w that simultaneously maximizes
the cost function, in the spirit of a noncoop-
erative game or saddle-point problem. More
detailed review of the H, control design pro-
cedure is given in Bewley (2001).

In addition to «, the two other design
parameters are the weighting on the control
penalty, £ (large £ resulting in small control
amplitude) and the weighting on the distur-
bance penalty, v (large v resulting in small
“worst-case” disturbance amplitude accounted
for during the controller design). A case of
particular interest is the Hy (or “optimal con-
trol”) approach, which is achieved by taking
the v — oo limit, resulting in a worst-case
disturbance of vanishing amplitude to be ac-
counted for during the controller design. It
may be shown that the control design proce-
dure in this limit is essentially equivalent to the
control design that minimizes the cost function
under a white-noise assumption for w.

PERFORMANCE ANALYSIS

In the previous section, we briefly discussed
the reformulation of the GL system into stan-
dard state-space form and the design an Ho,
compensator for this system with three design
parameters ¢, « and <. This section now exam-
ines some of the relevant questions concerning
the effectiveness of this compensation on both
the linear and the nonlinear GL system.

Linear control of the linear GL equation

We now introduce three appropriate mea-
sures of performances for the present problem.
The first measure is the maximum Reynolds
number for stability of the closed-loop system.
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Figure 3: Maximum Reynolds number for stability of the
controlled GL system with full-information Heo control as
a function of the robustness parameter v for various values
of the control penalty ¢. The horizontal line represents the
H2 limit Re = 284 (independant of £).

If one does not apply control, the system is
unstable as soon as Re exceeds the threshold
value of 47. The higher the new threshold
for instability is, the more effective the con-
trol is for delaying transition. The other two
performance measures are the transfer function
2-norm ||Txw||2, quantifying the amplification
of zero-mean white Gaussian disturbances by
the closed-loop system, and the transfer func-
tion infinity-norm ||Txw||co, quantifying the
amplification of disturbances with “worst-case”
structure by the closed-loop system. Broadly
speaking, the transfer-function norms ||Txw/||2
and ||Txw||oo represent how the wake model
with control feedback applied responds to be-
nign and malevolent disturbance respectively.
As a consequence, ||Txw||2 for a given stable
system is always smaller than ||Txw||oo-

The optimal control with full information
stabilizes the wake model up to a Reynolds
number of 284, which corresponds to stabi-
lization of 7 linear global modes. This is the
stabilizability limit of the model system with
the chosen actuator. No control design is able
to stabilize the system at a higher Reynolds
number (one reason this approach is termed
“optimal” control). The estimator itself is able
to fully recover the state from noisy measure-
ments at z; = 1.5 up to a Reynolds number of
235; this is the detectability limit of the model
with the chosen sensor. Due to the separation
principle between the control and estimation
problems in the Hy framework, the compen-
sator formed by combining the estimator and
the controller will stabilize the plant up the
minimum of these two values, Re = 235. This
number, corresponding to the stabilization of 6
linear global modes, compares quite favorably
with the maximum Reynolds number Re = 64



case 1 case2 case3
log v Re Re Re
47.0 47.0 47.0
50.9 47.0 47.0
99.4 47.0 47.0
129.6 89.1 94.2
151.2 122.5 120.0
169.7 142.7 140.7
186.5 163.7 160.6
218.4 201.3 197.5
231.5 218.4 215.5
235.0 221.6 231.6
235.0 235.0 235.0

o0 NDotmwN -

Table 1: New stability Reynolds number for estimator-based
Hoo control of the linear GL equation as a function of the
robustness parameter y. Case 1: £ = 1l,a = 1; case 2:
£=1,a =100; case 3: £ =100, = 1.

which could be stabilized by the proportional
control approach developed by Roussopoulos
and Monkewitz (1996), which stabilized only
one linear global mode. Our first conclusion
is therefore that the optimal control design is
much more effective in delaying system insta-
bility than simpler control strategies. A “ro-
bust” control design can also be developed with
this approach, either for the full-information
case or for the measurement-based compen-
sator. Figure 3 displays the variations of the
Re limit for the full information H, control for
various values of the control penalty £. Table 1
extends these results to the H., compensator,
i.e. to the case in which the controller does
not have access to full information but instead
constructs a state-estimate based on the mea-
surement obtained by the sensor.

The results from Figure 3 and Table 1 allow
us to draw 3 main conclusions. It appears first
that the maximum stabilized Reynolds number
depends monotonically on the robustness pa-
rameter -y before reaching an asymptotic value.
These asymptotic values as y approaches infin-
ity are the values given by the optimal control
approach (Re = 284 for the full-information
case in Figure 3, Re = 235 for the estimator-
based case in Table 1), which was expected as
the Hy control design reduces exaclty to the
Hoo control design for v = oco. Another impor-
tant conclusion is that, for a given robustness
parameter vy, increasing the penalty on the con-
trol ¢ or the measurement noise strength o
seems to result in decreasing the maximum Re
which is stabilized. We see therefore that the
Hoo approach is not more efficient than the #,
control in delaying the instability. This last
result can be easily interpeted since the local
minimum for J given by the saddle point com-
putation when v < oo is necessarily larger than
(or equal to) the global minimum given by the
optimal control when v — oo; introduction of

a Control Txwlle  [[Tawl]oo

0.01 RMO96 (proportional) 55.8 653
Hs (€ = 10000) 21.0 130

Hy (£ = 100) 20.3 122

Ha (€ = 10) 12.1 44.1

Ha (£ =1) 8.0 18.0

Hy (€= 0.01) 7.6 15.0

100 RM96 (proportional) 212 2500
Hs (€ = 10000) 165 1343

Hs (€ = 100) 161 1308

Ha (£ = 10) 121 796

Ha (£=1) 99.4 582

Ho (£=0.01) 96.8 553

Table 2: Comparison of transfer function norms ||Txw]||2
and ||Txwl||co at Re = 60 for six types of control: the
proportional strategy of Roussopoulos and Monkewitz
(1996), measurement-based Hz control for £ = 10000,
£=100,£=10,£=1and £ = 0.01. Top: o = 0.01, bottom:
a = 100.

the disturbance effectively detunes the optimal
compensator.

Another advantage of the modern control
design over the simpler proportional scheme of
Roussopoulos & Monkewitz (1996) is the de-
crease in the transfer function norms. Table 2
presents a comparison at Re = 60 for 2 differ-
ent noise strengths between the values of the
transfer function 2-norms and infinity-norms
for the RM96 proportional approach and for
the present optimal control approach with var-
ious values for £. A first result to be observed
is the monotonic dependance of the transfer
function norms on the control penalty ¢ and
the measurement noise to state disturbance ra-
tio oz for a given a, increasing ¢ results in
less authority of the control and therefore a
worse disturbance rejection (larger values for
the transfer function norms); for a given ¢,
increasing o results in having less reliable mea-
surements and therefore again a worse distur-
bance rejection. By analysing the results of
Table 2, it is clear that, both in the case of low
(a = 0.01) and high (@ = 100) noise strength,
applying modern control on the present sys-
tem is more effective than proportional control
in terms of disturbance rejection by the closed-
loop system, whether it is rejection of “white”
disturbances (lower value of ||Txw||2) or rejec-
tion of “worst-case” disturbances (lower value
of ||Txwl|eo). Therefore, even in the domain
where the simple proportional control of RM96
stabilizes the model, it is preferable to apply
modern control.

A final important aspect to be considered in
this linear study is the relative performance of
the Hy and H, controls. Table 3 presents the
values of the two transfer function norms for
various Reynolds numbers with the two con-
trol strategies applied: the #5 control and the
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Re [[Txwllz [[Txwlleo A2 Aco
60 8.5 20.0 - -
H2 100 40.9 224.8 - -
150 5541 17119 - -
200 5454553 13076172 - -
60 10.3 11.7  +21.2% -41.5%
Hoo 100 70.3 103.6 +71.9% -53.9%
150 6385 8594 +15.2% -49.8%
200 5465686 6625000  +0.2%  -49.3%

Table 3: Comparison of transfer function norms ||Tkw||2
and ||Txw|leo between two types of control for £ = 1 and
a = 1: Ha control and Heo control with the smallest value
possible for v. Ag is the relative difference between the
transfer function 2-norms and Ao the relative difference
between the transfer function co-norms.

Hoo control with the smallest possible value
for v (termed -yp). These computations were
achieved with moderate values of both the con-
trol penalty (£ = 1) and the measurement noise
to state disturbance ratio (o = 1). Important
conclusions can be drawn from the results dis-
played on the Table 3. It appears first that
both transfer function norms increase mono-
tonically as the Reynolds number is increased,
indicating hightened sensitivity of the closed-
loop system to disturbances as the number of
linear global modes increases. It appears also
that applying H, control instead of Hs control
results in an increase in ||Txw||2 and a decrease
in ||Txw||oo- As a consequence, a design trade-
off should be considered between white dis-
turbance rejection and worst-case disturbance
rejection. It also apparent that, for increasing
Re, it is preferable to apply H, control than
a Ha control, as the Ho, approach gives a very
large decrease in ||Txw]|oo, denoted Ay, while
giving only a very small increase in ||Txwl|2,
denoted Ay. We thus conclude that applying a
robust control as one approaches the stabiliz-
ability limit of the system, Re = 235, presents
a substantial advantage over an optimal con-
trol.

Linear control of the nonlinear GL equation

The idea of applying the linear control strat-
egy to the nonlinear GL model is appealing
for two reasons: first, because having designed
and computed a control, it is straightforward
to test it on the nonlinear equation, and sec-
ond, because the nonlinear model better ad-
dresses the real problem of interest, that is, sta-
bilizing the nonlinear synchronized behavior.
Figure 4 displays a simulation for Re = 100
with random initial condition for the simula-
tion when the optimal control is applied at
time ¢ = 150. This simulation was performed
with a semi-implicit Adams-Bashforth-Crank-
Nicholson (ABCN) time advancement. It can
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Figure 4: Linear control of the nonlinear GL equation for
Re = 100: time evolution of the amplitude 4 diameters
downstream of the cylinder. The Ha control is switched
on at t = 150 and drives the oscillating state to zero.
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be seen in Figure 4 that linear control ef-
fectively stabilizes the nonlinear system and
drives the state to zero extremely quickly. Fur-
ther computations will be needed to explore
this result at different Reynolds numbers and
for various different control strategies, though
this preliminary result is quite encouraging in
this regard.

CONCLUSION

This paper investigates the use of linear Ho
control theory on a simple model of the cylin-
der wake to answer some fundamental unan-
swered questions regarding the control of open
shear flows instabilities. It was shown that the
application of such modern control rules leads
to substantially better performance than the
proportional measurement feedback proposed
by previous studies by delaying the Reynolds
number for onset of linear global instability by
a factor of 5 and significantly decreasing the
sensitivity of the system to external pertur-
bations. The advantage of using robust over
optimal control was shown to be of particu-
lar importance near the stabilizability limit of
the system, and preliminary results were given
where the linear control stabilized the entire
nonlinear Ginzburg-Landau equation.

One of the conclusions from Monkewitz
(1989) and Huerre & Monkewitz (1990) con-
cerning control of open flows was that it was
very likely that each linear global mode needed
to be stabilized by a separate actuator/sensor
pair. The present paper has shown that, with
the proper control algorithm, this is in fact
not the case. The present control strategy
stabilizes 6 linear global modes with a single
actuator/sensor pair, which is in fact the “sta-
bilizability limit” of the present system - no



other control strategy can stabilize this linear
system further with the actuator and sensor
configured in the present manner.

Significant fundamental questions still re-
main unanswered:

(1) What is the best position for the actu-
ator and the sensor to obtain an overall best
performance, and what is the new maximum
Reynolds number and number of global modes
which can be stabilized?

(2) How is the “stabilizability limit” of the
system characterized in terms of its eigen-
modes? What is the limiting factor preventing
stabilization at higher Re?

(3) Under what conditions is the linear con-
trol effective on the nonlinear equation in the
synchronized, self-sustained, limit-cycling be-
havior? What is the effect of the noncoopera-
tive aspect of the “robust” formulation on this
problem?

(4) What filtering technique is most appro-
priate for estimation of the nonlinear equation?

(5) Do control strategies designed for one
Reynolds number work well at other Reynolds
numbers?

These questions are currently under active
investigation by the authors, and will be re-
ported in a future paper.
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