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ABSTRACT

A direct numerical simulation
(DNS) of turbulent pipe flow with a constant
transverse magnetic field has been carried out to
grasp and understand the effects of electromagnetic
suppression of turbulence caused by a constant
transverse magnetic field. In this study, the Reynolds
number based on a bulk velocity and a pipe diameter
was set to be constant; Re, = 5300. The magnetic
field at Ha = 5, 10, 20, taken from the electrical
potential equation was applied to a constant
transverse magnetic field. In the flow field, the
Lorenz forces act on radial and circumferential
components of momentum equation with cylindrical
coordinate. The number of computational grids used
in this study was 256 x 128 x 128 in the z-, - and ¢-
directions, respectively. The turbulent quantities
such as the mean flow, turbulent stresses and the
turbulent statistics were obtained via present DNS.
The mean velocity and turbulent intensities
distributed circumferentially and is damped quickly
near the top of the pipe (¢ = 0). The reason of this
behavior can be considered that the Hartman layer
drastically changes to the circumferential direction.

INTRODUCTION

There is considerable renewed interest in the area
of Magneto hydrodynamics (MHD), in the area of
MHD turbulent control and also in conceptual
designs of proposed blankets of fusion reactors. The
flow fields such as the areas are turbulent shear flow
in a transverse magnetic field. In a pipe flow with a
transverse magnetic field, the velocity profile
exhibited the Hartmann flattening at the top of the
pipe (¢ = 0 ) and also showed that the profiles
become more rounded in the near wall region at ¢ =
7 /2. A relative decrease in the turbulent kinetic
energy subjected to the Hartmann layer flattening at
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¢ = 0 is observed. These phenomena become more
remarkable with increase of Hartmann number.

An extensive experimental work was done
by Gardner and Lykoudis (1971) for the turbulent
pipe flow in a transverse magnetic field. Distribution
of mean velocity and fluctuation were measured in
the pipe flow with various strength of magnetic field.

A direct numerical simulation (DNS) of
turbulent pipe flow with axial and azimuthal
magnetic fields and was performed by Olrandi
(1996). He studied that the effect of the orientation
of magnetic filed and found in both cases the drag
reduction is achieved.

In this paper, the DNS is performed for the
turbulent pipe flow with a transverse magnetic field.
The turbulent statistics for the friction coefficients
are predicted and compared with theoretical
correlation (Sherclif, 1956). Furthermore, also
presented are predictions for the mean velocity and
fluctuation, which is obtained for each degree in the
azimuthal direction.

NUMERICAL PROCEDURE

The DNS code with cylindrical coordinates can
numerically solve the continuity and momentum
equations using the radial momentum flux
formulation. A  second-order finite volume
discretization scheme is applied to the spatial
derivatives on a staggered mesh system in order to
avoid a singularity at the center axis of the pipe
center. The incompressible Navier-Stokes and
continuity equations described in cylindrical
coordinate are integrated in time by using the
fractional-step method. The second-order Crank-
Nicholson scheme is applied to the radial direction
terms treated implicitly and a modified third-order
Runge-Kutta scheme is used for other terms
explicitly. In our previous study regarding the non-
MHD turbulent pipe flow (Satake and Kunugi, 1998),
this DNS code has been shown in good agreement



with the existing DNS results. In this study, the
magnetic field can be calculated by solving the
electrical potential equation instead of the Maxwell
equations. The equation is solved using Fourier trans
form and tridiagonal matrix technique.

COMPUTATIONAL CONDITIONS

The computational domain is shown in Figure 1.
The computational parameters are given in Table 1.
The Reynolds number based on the bulk velocity,
viscosity and the pipe diameter (D) is assumed to be
5300. Uniform mesh spacing is applied to the
circumferential (¢) and the streamwise (z) directions.
As for the radial direction (r), non-uniform mesh
spacing specified by a hyperbolic tangent function is
employed. The number of grid points is 256 x 128 x
128 in the z-, r- and ¢ -directions, respectively. The
periodic boundary conditions are adopted for
streamwise and circumferential direction. The all
velocity components imposed the non-slip condition
at the wall. B, is the transverse magnetic field.
Neumann condition on the electrical potential is
adopted at the wall. The computational domain is
shown in Figure 1. The Hartmann number (Ha = B,
R (o/pv)’?) based on B, the magnetic field, v the
kinematic viscosity, ¢ the electrical conductivity and
the pipe radius R are assumed to be 5, 10, 20.

RESULTS AND DISCUSSION

Figure 2 shows a comparison of present skin
friction with Shercliff’s analytical solution. It can be
seen that the skin friction at Ha =5, 10 are smaller
than Non MHD case. But at Ha=20, skin friction is
lager than Non MHD case and the curve fit of
calculated skin friction closely matches Shercliff’s
analytical solution for laminar pipe flow. These
results showed that the skin friction is slightly
smaller than Non MHD case when Hartmann
number is low

Mean velocity profiles with MHD at three angles
(¢=0, m/4, x/2) and without via DNS are shown in
Fig. 3. Regarding the results with MHD obtained
from the DNS, the Lorentz force near the wall region
due to circumferentially magnetic fields increases
the velocity at ¢ = m /2. This indicates that the
increase near wall region at ¢ = 0 is primary caused
by the so-called “Hartman effect”. That is, the
Hartmann effect flattens the velocity profile and
decrease with increasing the angle. At ¢ = & /2, the
profiles become more rounded than the zero-field
profile. These effects are due to the fact that
accelerations the flow near wall at ¢ = 0, but not at
¢= m /2. Gardner and Lykoudis (1971) found that
the effect is distributed in circumferential direction.
Note that the DNS for the ordinary pipe flow without
MHD is smaller at the whole region as shown in
same figure.
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Figure 4 shows the distributions of streamwise
velocity fluctuations. It is interesting that the
streamwise component near the wall region obtained
by the DNS with MHD is most decreasing at ¢= 7
/2, and that at all angles is smaller than the DNS
without MHD.

Figure 5 shows the distributions of radial velocity
fluctuations. The values decrease at the pipe center.
It is natural that the effect of magnetic suppression
¢ =0 is especially strong in the radial component.

Figure 6 shows the distributions of azimuthal
velocity fluctuations. The distribution at the pipe
center shows the similar trend to the radial
component. Thus, the turbulence behavior in the
DNS with MHD tends to be more isotropic than that
without MHD, and the behavior of the radial and
circumferential velocity fluctuating components near
wall region is more damped with increasing angle, is
obtained the peak value at ¢ = /2.

Figure 7 (a)(b)(c) show the contour of the
low-speed streaky structures. They are normalized
by v and a\}eraged u;. The volume visualized is
obtained as from full computational volume. In non
MHD case, approximately ten streaks can be
counted in the azimuthal direction in Fig. 7(a). If the
length is nondimensionalized with friction velocity
and the kinematic viscousity, the width of
circumference of the wall, is about 1130. Thus the
average spacing of the streaks is about 100-150.

However, in low Hartmann number (Ha=
10), the location of the skreaky structures observed
locally and the number of streaks are less than that
without MHD. Almost structures located at ¢ =r /2,
correspond to the rounded profile in the mean
velocity profile. The effect of magnetic field on the
angle is evident. The suppression in the streamwise
velocity fluctuation at ¢ =0 shows a similar trend in
Fig.4. At Ha= 20, the strucutres do not appear and
the weakly values (#'<-0.28) remain only at the
center of pipe and the near wall region at ¢ =7z /2.

SUMMARY

The DNS for the turbulent pipe flow with a
constant transverse magnetic field was carried out. It
is confirmed by the present DNS that the remarkable
reduction of the turbulence at ¢ = 0 is due to the
magnetic field change of circumferentially. The
turbulent fluctuation decreased mostly appears at ¢ =
0.

The decreasing also observed in the streaky
structures from visualization. Some features of
electromagnetic suppression by the transverse
magnetic field can be predicted via this DNS. More
detailed results, turbulent kinetic energy and
Reynolds stress budgets for each Hartmann number
cases and discussion will be reported in the
presentation.
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Table 1 Hartmann number and Reynolds number

Ha Re, Re,
0 5300 180
5 5300 176
10 5300 160
20 5300 192
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Figure 1 Computational domain
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Figure 2 Skin friction coefficients
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Figure 3 Mean velocity profiles: (a) ¢=0,: (b) ¢=n Figure 4 Streamwise velocity fluctuations: (a) ¢ =
4,:(c) o=rm/2. 0,:(b)o=m/4,:(c) p=m /2.
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Figure 5 Radial velocity fluctuations: (a) ¢ =0, : (b) Figure 6 azimuthal velocity fluctuations: (a) ¢= 0, :
o=mn/d,:(c)p=m/2. b)o=mn/d,:(c)p=mn/2.
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(a) Ha =0

(b) Ha=10

B,

(c) Ha =20
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Figure 7 3-D contour surface low-speed streak; (a)
Non-MHD, Grey: Low-speed streak (u'<-3); (b)
Ha=10, Grey: Low-speed streak (u'<-1.5); (c)
Ha=20, Grey: Low-speed streak (14"<-0.28)





