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ABSTRACT

A curvature correction for explicit algebraic
Reynolds stress models (EARSM), based on an
approximation of the formal derivation of the
weak-equilibrium assumption in a streamline-
based co-ordinate system is presented. The
proposed correction is (i) Galilean invariant,
(ii) identical to the formal transformation if the
magnitude of the velocity along the streamline
is constant and (iii) vanishes in flows without
curvature/rotational effects. The importance
of the curvature correction in EARSMs have
been shown for rotating homogeneous shear
and rotating channel flows where the proposed
model performs well.

INTRODUCTION

Turbulent flows over curved surfaces, near
stagnation and separation points, in vortices
and turbulent flows in rotating frames of ref-
erence are all affected by streamline curvature
effects. Strong curvature and/or rotational ef-
fects form a major cornerstone problem also at
the Reynolds stress transport modelling level,
and pressure-strain rate models that are able
to accurately capture rapidly rotating turbu-
lence are rare. In more moderate situations the
SSG model (Speziale, Sarkar & Gatski 1991),
and derivations thereof, show rather good be-
haviour in rotating flows such as rotating ho-
mogeneous shear flows, see Gatski & Speziale
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(1993). Standard eddy-viscosity models fail in
describing effects of local as well as global ro-
tation.

Algebraic Reynolds stress models, Rodi
(1972, 1976), are the results of applying the
weak equilibrium assumption on the full differ-
ential models. In the weak equilibrium limit
of turbulence, the Reynolds stress anisotropy
tensor, a;; = Uu; /K — (2/3)d;;, is assumed to
be constant following a streamline. Neglect-
ing also the diffusion of the anisotropy tensor
results in an implicit purely algebraic relation
for a;;. Algebraic modelling has had a renewal
during the last decade after it was found that
the resulting implicit algebraic relation for a;;
may be formally solved resulting in an explicit
relation, see e.g. Pope (1975) and Gatski &
Speziale (1993).

The material derivative that includes advec-
tion by the mean flow (in the following denoted
D/Dt) of a scalar field is invariant of the choice
of co-ordinate system. However, the material
derivative of a tensor field of higher order than
zero, e.g. vectors and second order tensors, is
not invariant of the choice of co-ordinate sys-
tem for representing the tensor components.

It has been suggested by e.g. Rodi &
Scheurer (1983) that the weak equilibrium as-
sumption is better evaluated for the anisotropy
tensor expressed in a streamline-based co-
ordinate system. In e.g. circular flows
where the azimuthal direction is homogeneous,
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Figure 1: Computed vortex circulation I" = 27V compared
to field measurements (Campbell et al. 1996, 1997) with
the initial profile (——). RST (-—-) compared to the corre-
sponding EARSM with (------ ) and without (—-—-) streamline
correction and standard K — ¢ model (—--—). Taken from
Wallin & Girimaji (2000).

the weak equilibrium assumption is then ex-
actly fulfilled. In cases with modestly curved
streamlines the choice of co-ordinate system
has a rather minor effect, see e.g. Rumsey,
Gatski & Morrison (1999) for flow over an
airfoil. However, in cases with strong stream-
line curvature this effect is dominating. In a
study of a generic wing tip far-field vortex by
Wallin & Girimaji (2000) it was found that
the turbulent dissipation of the vortex was by
far overpredicted using the standard algebraic
Reynolds stress models while including the ef-
fect of the streamline curvature gave a qualita-
tively correct behaviour (see figure 1).

CURVATURE-CORRECTED MODEL

In this section we will formulate a stream-
line curvature correction of explicit algebraic
Reynolds stress models (EARSM). The correc-
tion is derived from a formal evaluation of the
weak equilibrium assumption in a streamline-
based co-ordinate system, following ideas of
Girimaji (1997) and Sjogren (1997).

General quasi-linear Reynolds stress trans-
port models may be written in terms of a trans-
port equation for the anisotropy tensor

(55 - P5) = 4o (s + AiE)
+A15i; — (aik%; — Qirak;) (1)

+As (@i Skj + Sikarj — 3arSdi;)

see Wallin & Johansson (2000). Dg.l) is the
diffusion of a;; and 7 = K/e is the turbulent
timescale. The strain and rotation rate ten-
sors, S;; and €Q;;, are normalized by 7. All
linear (or quasi linear) models may be included
into this form.

The weak-equilibrium assumption

Usually, in deriving algebraic Reynolds
stress models the lLh.s. of (1) is neglected
in the computational (=Cartesian) co-ordinate
system. The resulting algebraic relation may
be formally solved leading to an EARSM, that
is an explicit relation for a;;, see Wallin &
Johansson (2000). The Ay coefficient in (1)
influence the EARSM only if a contribution of
the Lh.s. of (1) is included into the EARSM.

In this section we will derive the weak-
equilibrium assumption in a streamline based
co-ordinate system, which is a unique base
for transformation of a;; independent of, and,
thus, invariant of, the computational co-
ordinate system. A streamline is here taken
as the path of a fluid particle, though the for-
mally correct name for this is pathline.

Let us define a streamline based orthogo-
nal co-ordinate system by e; = (£,7,8). t is
in the streamline direction, # normal to % in
the local plane of the streamline and § is the
third direction. The Cartesian (or computa-
tional) co-ordinate system e = (&, ¢, £) can be
transformed to es using the orthogonal trans-
formation T' (T*T =1)

es=Te (2)

The material derivative of the anisotropy
in the streamline based co-ordinate system,
as = TaT?, transformed back to the Carte-
sian system, T*(--- )T, may be derived

DTaT! Da DT! DT
PDlal”,, Da tDL
T—py T=ptop I'+T Dta@

It can be shown that for any orthogonal trans-
formation T the following holds

DT! DT
T=-Tt=—"— =Q 4
Dt Dt @
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where Q) is an antisymmetric tensor. This
gives

Da _ TtDTaTt
Dt Dt
The best algebraic approximation may be

obtained by neglecting the transformed deriva-

tive (first term at r.h.s. of (5)) for a spe-
cific choice of co-ordinate system. The term

(a2 — Q) a) may be fully accounted for and

included into the EARSM formulation simply

by replacing € in (1) with

T - (aﬂ(r) - ﬂ(r)a) . (5)

r_0_ L om
Q*=Q AOQ . (6)

The formal transformation of the material
derivative has earlier been presented by Giri-
maji (1997) and Sjogren (1997), the later with
an extension for non-orthogonal co-ordinates.
They extended this analysis with a formal
derivation of the Q") tensor from the defini-
tion of the co-ordinate system. That analysis
becomes rather tedious especially in general
three-dimensional flows. The final expression
includes derivatives of the metrics of the curvi-
linear co-ordinate system which may cause nu-
merical problems when utilized for real three-
dimensional numerical computations (personal
communications T. Rung, Technical University
of Berlin).

In this paper we will not go further into the
derivation of Q") but rather try to understand
the physical interpretation of Q). The mate-
rial derivative of e is expressed by using the
transformation T'

Deg DT

5, = B Lles=—0es (1)

where Qgr) =TT is Q) transformed to
the streamline based co-ordinate system. The
Q) tensor is, thus, directly related to the ro-
tation rate of the co-ordinate system following
the fluid particle

Q(T) —€ijkWk (8)
where w = w3 + ¢t is the co-ordinate system

rotation rate vector. w and ¢ are the rotation
rates around the 8§ and t axes. There is no

225

rotation around the i axis since that is defined
to be in the local plane of the streamline.

Streamline based co-ordinate system

In general three-dimensional computations
it is not possible to a priori know the local
streamline co-ordinate system, which must be
derived from the computed flow field. The next
step is, thus, to obtain a method of deriving
the streamline direction. A natural choice is
to use the velocity vector as the direction of
the streamline. However, the velocity vector
is not Galilean invariant (for a superimposed
velocity), which is a necessary quality for a tur-
bulence model.

It was proposed by Girimaji (1997) to use
the acceleration vector U = DU/Dt as the
basis for the co-ordinate system. Since the
acceleration vector is Galilean invariant the re-
sulting streamline curvature corrected model
would also be Galilean invariant. Girimaji fur-
ther suggested to let one of the other unit
vectors be orthogonal to U in the plane of
U. In order to determine that plane in general
three-dimensional flows, one needs to obtain
U =DU/Dt. U and U are then used to form
the local co-ordinate system and in the fur-
ther, quite complex, formal derivation of the
Q) tensor one additional derivation of the co-
ordinate system base is needed.

Is it possible to approximate the co-ordinate
system rotation rate, w, directly from the ac-
celeration vector and the rate of change of
that? Let us 1nvest1gate the following approx-
imation
s )

U

w(8PProx)

The velocity along the streamline is U =
Vt. If the magnitude of the velocity along the
streamline, V, is constant, the acceleration vec-
tor becomes U = wV# and is normal to the
streamline. The material derivative of the ac-
celeration is then derived by using (7) and (8)
to

DU

U= o =“Vh- WAVE+weVs  (10)



and the approximation w(@PP™%) in (9) becomes

(11)

which is identical to the expression for the total
rotation rate vector from the formal transfor-
mation when V = 0. If the magnitude of the
velocity along the streamline is not constant,
additional terms appear in the approximation
(see below).

w@PProX) — 3 4 pf = w

The limit of vanishing curvature

One important property of a streamline
curvature correction is that it should vanish
when the streamline approaches a straight line.
Let us consider an almost straight streamline
where the curvature w is small. The accelera-
tion then becomes U Vt—{-an and the rate
of change of that U = Vi + (2wV +wV)n +
w@V'§ (plus higher order terms in w). The ap-
proximative w by use of (9) then becomes

()

Hence, w(®PProX) — O(w) for most cases, and
thus approaches zero as the streamline curva-
ture vanishes. Note that if V' = 0 we retrieve
the exact result for w(@PPr%) (see discussion in
previous section).

D

Dt

+ f‘—/—] 5+ 0(w?)

(approx) =w l:l +
wV

However, if U approaches zero the approxi-
mation becomes ill posed. Fortunately, in these
cases also the curvature approaches zero and by
limiting the denominator in (9) to some small
number C, (times £2/K) a well-posed approx-
imation results

UxU
max (UQ,C’Te?/K) .

w (approx) __

(13)

GENERIC TEST CASES

Rotating homogeneous shear flow

Rotating homogeneous shear flow may be
used as an illustration of the effect of includ-
ing the streamline curvature correction. In
this specific case it is obvious to transform the
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Figure 2: Computed evolution of the turbulent kinetic en-
ergy K in rotating homogeneous shear flow compared to
large eddy simulation (o), Bardina et al. (1983). Curva-
ture corrected WJ (——-), CC-WJ (------ ) and L-SSG (—-—-)
EARSMs compared to non-corrected CC-WJ EARSM (—---)
and eddy-viscosity model (——). 7dU/dy = 3.4 initially.

anisotropy tensor to the rotating co-ordinate
system, but exactly the same effect is obtained
by applying the correction proposed in this
paper. For this case, the weak equilibrium as-
sumption is exactly fulfilled.

Four different cases were computed where
the rotation rate Ro = w/(dU/dy) is 0, 1/4,
1/2 and —1/2, see figure 2. It is obvious
that the eddy-viscosity model cannot distin-
guish between the different rotation rates.

These cases were computed with the curva-
ture corrected algebraic Reynolds stress model
resulting from (1) with model coefficients given
in table 1. The model based on the linearized
SSG (L-SSG) gives reasonable growth rates for
most rotation numbers, though underestimat-
ing the most energetic case (Ro = 1/4). The
Wallin & Johansson (2000) model underesti-
mates both cases with positive rotation. How-
ever, by increasing the Ag coefficient to the
same value as for L-SSG the CC-WJ model

Ao Ay Az A3 Ay
L-SSG -0.80 1.22 047 0.88 237
WwJ -0.44 1.20 0 1.80 2.25
CC-WJ —-0.80 1.20 0 1.80 2.25

Table 1: The values of the A-coefficients for different quasi-
linear pressure-strain models
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Figure 3: Computed rotating channel flow for Ro = 0.43 (top) and Ro = 0.77 (bottom) compared to DNS of Alvelius &
Johansson (2000). Curvature corrected WJ (——=-) and CC-WJ (——) EARSM compared to non-corrected CC-WJ EARSM

(------ ). U' = 2w (—-—) is also shown.

gives predictions close to the L-SSG. The same
was observed by Wallin & Girimaji (2000) for
the vortex.

Switching off the curvature correction for
the CC-WJ model degenerates the predicted
growth rate for the Ro = 1/4 case, and for
the Ro = 1/2 case the growth rate is severely
overpredicted. From this, it is clear that the
streamline curvature correction is important.

Fully developed rotating channel

Fully developed rotating channel is consid-
ered. The channel coordinate system is &, 9§
and 2 which is rotating with the rate w in
the 2 direction. Also in this case it is obvi-
ous to transform a;; to the rotational frame,
and both the exact transformation and the pro-
posed approximation exactly fulfills the weak
equilibrium assumption.

DNS CC-WJ
Ro 0.43 0.77 0.43 0.77
Res 129.7 133.0 | 129.3 137.6
Re} 218.3 217.2 | 2186 213.9
Rem | 3094 3446 | 3237 3741

Table 2: Rotating channel flow. DNS specification (Alvelius
& Johansson 2000) and computational results using the cur-
vature corrected CC-WJ EARSM.
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Direct numerical simulations of a fully de-
veloped rotating channel at different Reynolds
and rotational numbers were made by Alvelius
& Johansson (2000). The two most rapidly
rotating cases for Re,=u,d/v = 180 are com-
puted here. § is the half channel width and
the average wall friction velocity is defined as
2u? us? + u¥? where ué and u® are the
stable and unstable side friction velocities, re-
spectively. The rotation number Ro=2wd/Up,
and the bulk Reynolds number Re,,=Up,d/v
are defined in table 2 where w is the rotation
rate of the system and U, is the bulk velocity.

The Wallin & Johansson (2000) EARSM
based on the Wilcox (1988) K — w model is
computed with the proposed curvature correc-
tion. The curvature corrected CC-WJ EARSM
agrees well with DNS data, though a slightly
overpredicted Re,, is seen in the U™ plots in
figure 3 and in table 2. Using the curvature
corrected original WJ EARSM the effect of ro-
tation is slightly overestimated while the non-
corrected CC-WJ EARSM underpredicts the
rotation effects. Thus, the effect of curvature
correction and the choice of Ay is also for this
case important. In table 2 it is seen that the
skin friction differences between the stable and



unstable sides are well captured by the curva-
ture corrected CC-WJ model.

The shear stress plots in figure 3 show that
all models reasonable well captures the lam-
inarization on the stable side. However, the
DNS data show a small level of positive shear
stress for the Ro = 0.43 case where all models
gives almost zero uv.

CONCLUDING REMARKS

The proposed curvature correction is a
straight forward extension of existing EARSMs
and it is important to note that the original
EARSM is retrieved in cases without stream-
line curvature. The proposed correction is ex-
plicitly expressed in terms of the acceleration
vector and its material derivative. Thus, sec-
ond derivatives of the velocity field are needed.
That should not cause any major numerical
problems, since that is already needed for
the diffusion term in the momentum equation.
However, the matter of computational stability
is an important aspect that will be addressed
in further studies.

The acceleration vector and its material
derivative fulfill Galilean invariance, that is in-
dependence of solid-body motion of the frame
of reference, and, thus, also the proposed cor-
rection is invariant. However, any incompress-
ible flow field should also be independent of
a superimposed solid-body constant accelera-
tion, according to Spalart & Speziale (1999),
except for a modified pressure field. The pro-
posed modification must thus be used with
caution in accelerated frames of reference. Ex-
tensions of EARSMs for including approxima-
tions of the usually neglected transport terms
could never be expected to be completely gen-
eral, but could anyway be motivated by im-
proved model performance in a reasonably
wide class of flows.

An alternative approach was suggested by
Gatski & Jongen (2000) where the transfor-
mation is derived from the eigenvectors of the
mean strain rate tensor for two-dimensional
mean flows. However, it is not completely
clear how to extend that to general three-
dimensional mean flows.
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