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ABSTRACT

Turbulence in the vicinity of a zero mean-
shear gas-liquid interface is considered us-
ing low-Reynolds-number second-moment clo-
sure modelling. Near-boundary damping is
achieved by elliptic relaxation, which has
proved to be particularly amenable to mimic
the turbulence anisotropy near solid surfaces.
A modification of the elliptic relaxation for-
mulation and the accompanying length scale is
proposed to improve the behaviour of the re-
distribution term in the vicinity of the free sur-
face without deteriorating its wall characteris-
tics. The new formulation is verified against
DNS data of channel flow and experiments
on film flow. The wall-friction dependence
on Reynolds number is compared with experi-
mental data, a mixing-length formulation, the
Launder & Sharma k-¢ model and Durbin’s k-
e-v?> model. The full Reynolds stress model
and the k-e-v? model compare most favourably
with the experimental results.

INTRODUCTION

Turbulence modelling is essential in com-
puterised flow analysis and turbulence closures
are normally developed and tested for either
free or wall-bounded flows. However, numer-
ous industrial applications, notably in chemical
engineering, involve flow problems in which the
turbulence adjacent to a gas-liquid interface
plays a crucial role in the determination of in-
terfacial transport processes; see e.g. Fulford
(1964).

In this paper we consider gravity driven flow
of a thin liquid film down along a vertical wall,
as depicted in figure 1. It is commonly as-
sumed that the flow becomes turbulent when
the film Reynolds number, Re = q/v, exceeds
400. Here, q denotes the volumetric flow rate
per unit width of the film and v is the kine-
matic viscosity of the liquid. Alekseenko et

*exchange student from J.M. Burgers Centre, Laboratory
for Aero- and Hydrodynamics, TU Delft, 2628 AL Delft, The
Netherlands

217

/)

Xz
1 X1
No slip Free slip
boundary boundary
U lg
h
—>

Figure 1: Sketch of the flow geometry with coordinate sys-
tem and mean velocity profile.

al. (1994), however, claim that transition to
turbulence takes place somewhere in the range
500 < Re < 1000.

THE PHYSICAL PROBLEM

Let us for simplicity assume that the tur-
bulent film flow under consideration here is
statistically steady and fully developed in the
streamwise (i.e. vertical) direction and that
the wave-free interface is maintained parallel to
the wall. The friction against the surrounding
gas phase is assumed negligible and the liquid
flow is therefore driven solely by the gravi-
tational acceleration g. The one-dimensional
mean flow U(z2) is governed by the Reynolds-
averaged Navier-Stokes equations, which read-
ily can be integrated once to give a linear vari-
ation of the total shear stress

dU uru
V— — =
dzy 1U2

(1)

from the wall (z2=0) to the free surface (z2
=h). Here, u, denotes the conventional wall
friction velocity, which in this particular sit-
uation relates directly to the film thickness h
according to u? = gh, since both sides of equa-
tion (1) should vanish at the interface.

—gzo + ug



TURBULENCE MODELLING

The crucial question which now remains to
be addressed is how to model the kinematic
Reynolds shear stress in equation (1). If a
mixing-length type of model is adopted, the
closed form solution

U(y)

/y 2(h —y)g/v
0o 1+ (1 +4(h—y)gl?/v?

is readily obtained, where van Driest’s (1956)
representation of the mixing-length [ can be
expected to be reliable near the wall and a
number of modifications can be applied further
out; see e.g. Yih & Liu (1983) for an overview.

However, physical intuition suggests that
the turbulence in the vicinity of a shear free
boundary is highly anisotropic and approaches
a two-dimensional state at the surface itself.
Accordingly, all turbulence models based on
Boussinesq’s eddy viscosity hypothesis, includ-
ing algebraic mixing-length models and differ-
ential k-¢ models, inevitably fail to return a
non-isotropic Reynolds stress field at a shear-
free surface.

To this end a differential second-moment
closure (SMC) is adopted, as advocated by
Gibson & Rodi (1989) for open-channel flow.
While they used a so called wall-proximity
function in order to weaken the effect of the
pressure-strain redistribution near the solid
and free surface, the elliptic relaxation formal-
ism devised by Durbin (1993) eliminates the
need for wall-distances and wall-normals. In
this novel approach, a relaxed pressure-strain
tensor, g;; = k- f;;, is introduced and related to
an intermediate tensorial variable f;;, the lat-
ter which in turn is obtained from a Helmholtz
type elliptic equation

e dy (2)

L?V2fi; — fis = —¢i;/k (3)
where ¢f~ is a homogeneous pressure-strain
model. ]gy multiplying f;; with the turbu-

lent kinetic energy, k, the correct behaviour
of p;; — 0 at a no-slip boundary is enforced.
Note that g;; represents both the pressure-
strain and the redistributive part of the pres-
sure diffusion term.

Furthermore Durbin (1993) included the
misalignment of the dissipation tensor and the
Reynolds stress tensor into g;;. The effect of
this is that the dissipation will be represented
by the term "#k"ie close to the wall and the term
§6ij € in the quasi-homogeneous limit, that is
far from walls. (Another way of interpreting

218

this is that u;u; ; represents ¢;; everywhere and
that the return-to-isotropy constant is reduced
by 1 to account for the dissipation being mod-
elled anisotropic in contrast to conventional
turbulence modelling.) With these presuppo-
sitions the Reynolds stress transport equations
become

£
Dt = Pij+pi — Wt 1+ Ty +vV w5 (4)

where
Pij = —ujug 0xU; — ujug OxU;
2
pij = —u;0;p—u;op+ gukakp di; (5)
£
—(eij — Ui Uy E)
2

Tiy; = -—Ok(uruu; + 3 URP di5)

2
€ = g(si]‘ £

Turbulent diffusion is modelled according to
Daly-Harlow (1970) as

Tij = 0(Cpigtm T OpTUst;) (6)

The elliptic relaxation equation then becomes

_ ﬂlj_ Uiy — %k 6ij (7)
k kT

Durbin (1993) defined the time scale and the

elliptic length scale as

k

T = max [—,
€

L*V?fij — fij =

v
TGN I

€

3/2 3

L = Cf, max [’f— 0,7(”—)1/4] (9)
€ €
In this way the Kolmogorov scales represent a
lower bound on the time and length scales, and

singularities at the wall are avoided.

Modification of the elliptic relaxation formu-
lation for a free surface

As mentioned earlier, the turbulent kinetic
energy, k, multiplied with f;; assures that
pij = 0 at a no-slip wall. At a free surface,
k is not zero. This means that imposing block-
ing on the normal component gives 92 # 0 at
the free surface, which is physically wrong. To
evade this (;; is redefined in a manner similar
to Dreeben & Pope (1997)

(5..
pij = fijluiug|? — %(fn |ugu |2

+ foz lugug|'/? + fas lugus|t/?) (10)



This formulation! enforces p2s = 0 on the free
surface and satisfies the redistribution prop-
erty 11 + 22 + 33 = 0. g;; is bridged from
the quasihomogeneous solution to the proper
boundary value through the modified elliptic
equation! given as

LV fij — fij
e
Juiug |2

The dissipation of turbulent kinetic energy is
found from the transport equation,

C:1Pk — 0526
. )ore] (12)

where vy, = Cupu; T. CX = Ce1(1+ a1 Pi/e)
is made dependent of Py (Durbin, 1993) in
order to increase the dissipation close to the
wall.

2
uiuj — 5k d;j
|uiu; |[/2T

(11)

VT

Die = + 8k [(1/ +

€

Quasi homogeneous pressure-strain model

The SSG model (Speziale et al., 1991) is
employed as quasihomogeneous pressure-strain
model. (The model is not presented here.)
All original constants, except g3 are retained.
Wizman et al. (1996) found better agreement
with DNS in the log-layer by increasing g3 from
1.3 to 1.5. These observations were confirmed
in our simulations, and g3 = 1.5 was therefore
adopted in this study.

Boundary conditions
Boundary conditions for f;; at the wall are
obtained by studying the leading terms in the

Reynolds stress transport equation approach-

ing the wall assuming u? and u? o 3, u3 o< 3,

Uruz o x5 and eyqy = 2vk,1/x3,. (The nota-
tion , 1 means that the variable is evaluated at
the first grid point away from the boundary.)
This gives

fiiw = fasw =
10v 1/2
foow = *T|U2U2|,1/ (13)
2,1
v 1/2
fiozw = T|U1U2|,1/
2,1
For the velocity we use the usual no-slip con-
ditions
Uy =0, wd=ul=ul=0 (14)
Following the same procedure for the free sur-

face assuming u?, u% and k ~ constant, uZ oc 73

!No summation over i or j
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and WUz x x2, boundary values at the free
surface become

2v 1/2
fazs = ——o—|uzua| Y (15)
T21
For f11s, fsss and fios we choose
Oafiis = 0
1/2
uj1uU1
fa3s = —fiis |— (16)
uzu3 | o
0.2v
fi2s = T|u1u2|,11/2
T31

The free surface is modelled as a free-slip sur-
face, neglecting shear to ambient fluid and nor-
mal motion of the surface

WU =0, Bul = du2 =0, u2=0 (17)

11 is set equal to —gps3 at the surface. This
assures that the trace of g;; is zero and that
g22 = 0. If also the derivative of f33 is set to
zero, both fi; and f33 will be negative since
Ugug is zero. The quasihomogeneous pressure-
strain model normally redistributes energy to
Uzt from both the streamwise and spanwise
component. f33 is set positive since uzus is
smaller than wiu;. Energy is thereby trans-
fered from the streamwise component to the
spanwise component at the surface. Assum-
ing WUz x z2, the near-surface analysis gives
fi2s = 0, i.e. there should be no blocking of
Urug. If this is implemented, the velocity at-
tains a maximum below the free surface even at
Re,; = 180. This feature is not shown in DNS
of film flow at this Reynolds number (Lam &
Banerjee, 1992). Therefore % of the blocking
coefficient for uzu3 is adopted for uyus.

Modified elliptic length scale

If the original length scale (eq. 9) is em-
ployed, the damping of uzus towards the sur-
face will become too strong since L here is
large due to small dissipation, . The elliptic
length scale needs to be reduced substantially
towards the surface to achieve the right block-
ing of wauz. Also in channel flow, L has to
be reduced in the centre of the channel to de-
crease the effect of the elliptic operator. If this
is not done, uzuz will be larger than wyuy in the
channel centre, see Durbin (1993). The length
scale used here, both for the channel flow and
the film flow simulation is

k3/2 3\1/4
o max [E2, ¢, (£)1/4] -
- L1+max [O O 311+ 11Ty ]
A Iy § §



with Cs= 50, III= bikbkjbji/3 where bijz
Uu; 2k — 6;5/3 and IIl,= —1/108. This
modification is not effective in the wall region.
Further out when III becomes less than
IIlin/3, L will be reduced. The modified
length scale has a theoretical minimum of
approximately 1/2 of the Kolmogorov scale
for symmetric two-dimensional turbulence.
Model constants used are listed in table 1.

Cs
50

a1
0.10

Ce1
1.40

Ce2
1.83

Cu
0.26

Cr
0.20

O¢
1.40

C"I
90

Table 1: Model constants

Other turbulence models

For comparison we have tested a range
of turbulence models, starting with a simple
mixing-length model, with mixing-length given
as (van Driest, 1956)

| = ry[l - exp(—yue/vA)]  (19)

with k = 0.40 and A* = 26.

The Launder & Sharma (1974) k-e-model
and the k-e-v2-model proposed by Durbin
(1991) have also been tested. Here the IP
model was used in the fos-equation. Results
are shown in figure 9.

CHANNEL FLOW RESULTS

To test the modifications of the elliptic re-
laxation formulation we simulated the flow be-
tween to infinite planes at Re, = 180 and
Re; = 590 and compared the results with
DNS data (Moser et al., 1999). The turbu-
lence intensities (Fig 2 & 3) and the velocity
profiles, (Fig 4) scaled with wu,, coincide well
with DNS results for both Reynolds numbers,
demonstrating that the new formulation is ad-
equate for wall-bounded flows.

FILM FLOW RESULTS

Figure 5 shows turbulence intensities for
film flow with the original length scale (eq.
9) and the modified length scale (eq. 18).
Here Durbin’s original elliptic relaxation for-
mulation is used. By employing the original
length scale, uzuz is over-damped towards the
surface. The energy of uzus is redistributed to
the other components approaching the surface,
but since Wz contains relatively little energy
no enhancement of wuy or U3u3 in the surface
region can be seen. With the modified length
scale we observe an increase in uzusz approach-
ing the surface, which is in accordance with
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Figure 2: Turbulence intensities in channel flow at Re, =
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180, model (lines) and DNS (symbols).
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Figure 3: Turbulence intensities in channel flow at Re, =
590, model (lines) and DNS (symbols).
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Figure 4: Mean velocity profiles in channel flow at Re, =
180 and Re; = 590, model (lines) and DNS (symbols).

experiments (Komori & Ueda, 1982) and DNS
(Lam & Banerjee, 1992).

Figure 6 compares the redistribution term,
fij, with the original and the modified length
scale. With the modified length scale the
process of withdrawing energy from the nor-
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Figure 5: Turbulence intensities in film flow at Re, = 180.
Original (lines) and modified elliptic length scale (symbols).
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Figure 6: Redistribution terms gp;; in film flow at Re, = 180.
Original (lines) and modified (symbols) elliptic length scale.
mal component is concentrated much closer to

the surface, thereby increasing the energy of
uzuz. While g;; performs the redistribution,
the physically incorrect nonzero of g2 at the

surface is glaring.
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Figure 7: Turbulence intensities in film flow, new model
formulation at Rer = 180 (lines) and experiments (Komori
& Ueda, 1982) at Rer = 194 (symbols).
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Figure 8: Redistribution terms p;; in film flow at Re, = 180.
New elliptic relaxation model formulation.

the surface and in full accordance with the
DNS data by Komori et al. (1993). p22 and p12
(not shown here) are both zero on the surface,
whereas 11 and 33 attain a small negative
and positive value, respectively. With this for-
mulation, the energy is equally redistributed
between the streamwise and spanwise compo-

The turbulence intensities from the simu-
lation with the new elliptic relaxation formu-
lation is presented in figure 7 together with
experimental results (Komori & Ueda, 1982)
on film flow at Re; = 194. The results for
normal and streamwise components agree very
well with the experiments. The model predicts
considerably higher intensity of the spanwise
component than the experiments. This might
partly explain why the increase in T3u3 towards
the surface is underestimated by the model.
The normal component has not enough energy
to considerably increase the spanwise compo-

nent.

Compared to the original formulation

the process of distributing energy from uzus
to the other components is expelled away from
the surface to the region just below, thus evad-
ing the unphysical situation of a nonzero 22

and g2 at the surface.

Dimensionless film thickness

h

Finally, figure 9 shows how the dimension-
less film thickness h correlates with the film
Reynolds number and how well the model pre-
dictions compare with the experimental data of

nent.

The redistribution term, g;;, with the new
formulation (Fig 8) behaves very nobly towards
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Alekseenko et al. (1994) for a whole range of
turbulence models. The k- model clearly over-
estimates the film thickness (or wall friction).



This is not surprising since no modification is
introduced towards the surface. The simple
mixing-length model gives better results than
the k-¢ model for this case. The SMC model
with modified elliptic relaxation procedure and
the k-e-v? model conform nicely with the ex-
periments.

10%

o experiments
= .. Mixing-length

h(v2rg)'®
5

R TRANSITION

.
10°
Re

Figure 9: Dimensionless film thickness h versus film
Reynolds number

CONCLUSION

Mixing-length and k-¢ models in turbulent
film flow simulations are sufficient for many
engineering purposes. If more detailed infor-
mation about the turbulence structure near
the free surface is needed, i.e for heat trans-
fer or chemical reactions, a more accurate
model has to be adopted, like Durbin’s k-e-v2
or a full second-moment model together with
the elliptic relaxation procedure. The origi-
nal formulation together with suitable bound-
ary conditions works, but a glaring, physically
wrong, nonzero value of the normal redistribu-
tion term on the free surface has been observed.
This shortcoming is remedied with the new for-
mulation proposed in this article. The new
formulation does neither enhance the complex-
ity of the model nor aggravate the near-wall
behaviour of the redistribution term g;;.
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