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ABSTRACT

We performed a comparative a priori examina-
tion of several algebraic and differential second-
moment closure models (ASM and DSM) using the
DNS database for three generic flows: fully devel-
oped channel flow (Moser et al., 1999), flow in
an axially rotating pipe (Eggels et al., 1994 and
Orlandi and Ebstein, 1999) and the flow over a
backward-facing step (Le et al., 1997). First, the
coefficient functions G and the basis tensors in
the algebraic expression for the Reynolds-stress ten-
sor, as well as the stress components themselves,
were evaluated and compared for several ASMs.
Then, the model coefficients of the pressure-strain
term in the DSM were deduced from the DNS
database, and compared with different model pro-
posals. Last, the term-by-term analysis of the
pressure-strain and dissipation correlation for sev-
eral DSMs were performed.

INTRODUCTION

Rampant number of different model suggestions
for turbulence closures and consequent confusion
among potential users call for a further compar-
ative scrutiny of the various model proposals in
a broader number of generic flows with different
features. This analysis focuses on two separate -
though related, issues, each representing the back-
bone and major target of model improvement in the
two model classes considered. The first part deals
with the nonlinear stress-strain relations, which are
either based on implicit algebraic stress models or
are formal higher order extensions to the linear
model proposal relating the Reynolds stresses to
the mean velocity field. The second part focuses
on differential Reynolds stress models and here on
the model for the pressure-strain and dissipation
correlations as the crucial unknown terms.

ALGEBRAIC STRESS MODELS

Most recent proposals for improving eddy-
viscosity two-equation models use a higher order
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nonlinear constitutive stress-strain relationship.
Following the conjecture that the Reynolds stress
anisotropies a;; = U;u;/k — 20;;/3 are uniquely
determined by the mean velocity field and local
scalar turbulence scales, defined in terms of the
turbulent kinetic energy k and its dissipation
rate € (or a combination of these two variables),
allows to generate a closed set of equations for
a;j. For the general three-dimensional case the
Cayley-Hamilton theorem yields the most general
relationship for the stress anisotropy tensor in

terms of five independent basis tensors Ti(;l)
consisting of various traceless combinations of
the mean rate of strain S;; and the mean rate of
rotation €;;.

5
a5 = Z G(n)Tl(Jn) (1)

n=1

Pope (1975) originally suggested to use ten in-
dependent basis tensors in the above expression,
with the coefficients expressed as rational polyno-
mials of the invariants resulting from the various
combinations of S;; and €;;. According to Rivlin
and Ericksen (1955) however, there can only be
five independent symmetric and traceless 3x3
tensors. Therefore, if a less restrictive formulation
of G is assumed, a 5-tensor basis is sufficient.
Confining the attention to two-dimensional flows
for the following analysis results in a nonlinear
stress-strain relation that can be written as a
combination of three independent basis tensors:

T® Tj(ff)
©j ~ ~
~~ 1
a;; = el Sij +G®@ (SikSkj - gslelkéij)
+ GP (SiQuj — QurSiy) (2)
Tgs)

where S;; = (0U;/0x; 4+ 0U;/0x;)/2 and Q5 =

In two-dimensional flows the coefficients G®
can be functions of only two independent invari-
ants SkSix and Qg Qx, of the scale providing



quantities k and ¢, and of various model param-
eters. One way to determine the proper form
of the coefficients G() is to solve a simplified
version of the differential Reynolds stress transport
equation as suggested by Pope (1975). If both the
transport and the convective term are abandonned
the partial differential equation for a;; can be
transformed into an algebraic equation allowing
for a solution if the appropriate ansatz of Eq.
(2) is chosen. The advantage is that now all
model parameters in the nonlinear stress-strain
relation are determined by the model parameters
of the pressure-strain correlation of the underlying
differential Reynolds stress model. The other way
to determine G() is to systematically extend the
linear stress-strain relation utilized in the standard
k — € model. Depending on the model formulation,
the coefficient functions can differ significantly. In
all cases, however, the scale providing quantities
influencing the nonlinear stress-strain relation can
be determined via a k-e model.

In this paper six different nonlinear stress-strain
relations based on the works by Craft et al. (CLS,
1996), Jongen et al. (JMG, 1998), Khodak and
Hirsch (KH, 1996), Knoell and Taulbee (KT, 1999)
and Wallin and Johansson (WJ, 2000) are assessed
in an a priori manner by expressing the specific
model formulation in a way consistent with Eq.
(2) and then inserting DNS data for k, € and the
mean velocity field to compute the components of
a;j. This procedure has the advantage that any
contamination of the expression for u;u; due to
inaccuracies in the modeled transport equation for
k and e and vice versa is avoided. It is believed that
these contaminations, that may become invisible in
the final computational results when the complete
model is used due to compensating errors, are not
negligible and reduce the applicability of turbulence
models to only a limited family of flows in which
the model was tuned.

Two examples of this assessment, Figs. 1, show
the results for the first two normal stresses and the
shear stress in the boundary layer upstream from a
backward facing step at the position z/H = —3.
Apart from some details in the near-wall region,
all models considered agree fairly well with the
DNS data. Furthermore, using the DNS data the
correct behavior of the coefficient functions G(*)
and the basis tensors can be deduced as follows:
inserting the available DNS data for the mean
velocity field and the Reynolds stress anisotropies
results in a linear 3x3 system of equations for G(*),
which can be solved to determine G(®) directly
from DNS data. Now it is possible to compare
the model formulations for each of the three terms
in the ansatz for a;; with the corresponding data

from the DNS as shown in Figs. 2 for GOTY),
G(Q)Tl(f) and G(l)Tl(;). The overall agreement is

reasonable considering the very complex nature of
the functionality.
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Fig. 1. Boundary layer upstream from a backward-
facing step flow: a) w2, v2 and b) v stress
components at the position z/H = —3
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Fig. 2 Boundary layer upstream from a backward-
facing step flow: a) G(l)Tl(ll), b) G(2)T1(f) and c)

GA1)TA1)12
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G(l)Tl(;) products at the position z/H = —3

In the outer region of the boundary layer the
three building blocks of the constitutive equation
show some random behavior. Here the results are
strongly affected by the noise in the DNS data for &
and e. With the help of this methodology the three
terms in Eq. (2) can independently be assessed al-
lowing a very effective way of calibrating the model
parameters. Fig. 3 illustrates the a priori behavior
of the two normal Reynolds stresses and the shear
stress at the station within the recirculating region
in a backstep flow (z/H = 4). Again, the overall
agreement is fair except from some inconsistencies
stemming from the near-wall formulation. Here the
new approach can be very useful for a re-evaluation
of the critical wall modifications.

a)

Flow Over a Backward Facing Step al xH=4

004

ww

001

0 05 1 15 2
y/detta

Fig. 3. Backward-facing step flow: a) u2, v2? and
b) Wv stress components at the position z/H = 4
within the separation bubble

Furthermore, the peaks in the a priori predictions
of the stresses can now clearly be attributed to the
domination of the denominator in the coefficients
G approaching zero and thus creating singulari-
ties. This effect can be avoided by a regularization
procedure on the basis of a Padé approximation, as
discussed by Gatski and Speziale (1993). However,
this approximation can be considered as an ad-hoc
modification not originating from the exact solution
of the reduced Reynolds-stress transport equation.

DIFFERENTIAL STRESS MODELS

The key issues in closing the transport equations
for the turbulent Reynolds stresses are the mod-
elling of the pressure scrambling process, viscous
destruction - dissipation, and turbulent transport.
An analysis of behaviour of several, most frequently
used model schemes of the two former processes
will be given here, using DNS results for the three
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generic flows mentioned earlier.

Pressure-strain models

All model proposals for the slow (see, e.g.,
Speziale et al., 1991) and rapid (see, e.g., Johans-
son and Hallback, 1994) parts of the pressure-strain
correlation in the differential second-moment clo-
sures can be written in general forms, respectively:

1
(I>ij,1 = —¢€ [Claij + C{ (aikakj - §A2(5ij>] (3)

D;i0
k
2
Q2 (aipSpj + ajpSp,- — gapquqéij) +
Q30i50pgSpq +
1
Q4 (aiqajp - gapkakq(sij> Spq +
1
'?;A?‘sij)] Spq +
1
Qeapiaiq (aikakj - §A25ij) Spq +

Q7 (aipQpj + ajpQpi) +
anpk(ajkﬂpi + aikaj) +
Qoapk(ajkaiq + ikajq)Upq

= @Q1S5;; +

Qs [aplalqaij + apq (aikakj -

(4)

The scalar functions C; and C] as well as @19,
all written in terms of the second (A2 = ajja;;)
and third (A3 = a;jajzak;) invariants of a;; and
turbulence Reynolds-number Re; = k?/(ve) are
determined applying different mathematical con-
straints such as the symmetry in indices, continuity,
Green’s condition, realizibility, as well as the prin-
ciples of material frame indifference. In addition,
some homogeneous flows and the rapid distortion
theory are used for the calibration of the coeffi-
cients.

We consider in parallel the following models: the
linear model by Launder et al. (LRR, 1975) and
Gibson and Launder (GL, 1978) quadratic by Shih
and Lumley (SL, 1985) and Speziale et al.(SSG,
1991), cubic by Fu et al. (FLT, 1987), Launder
and Li (LL, 1994) and Ristorcelli et al. (RLA,
1995,) and the 4-th order model by Johansson
and Hallback, (JH, 1994). In addition, considered
are also the low-Re-number extensions of the basic
Reynolds-stress model by Hanjalic and Jakirlic (HJ,
1998), by Launder and Tselepidakis (LT, 1993) and
Craft et al. (CKL, 2001) i.e. Craft (1998). Because
of space limitation, the coefficients will be not listed
here. The readers can consult the references men-
tioned above.

The most general model for the slow part is
quadratic, because the Cayley-Hamilton theorem
allows higher powers of a;; to be expressed in terms
of a;; and afj. This quadratic model can be written



as in equation (3), where the profiles of coefficients
C; and C’i take different shapes for different model
formulations, Fig. 4. The DNS database for fully
developed channel flow (the only DNS where the
slow and rapid parts are evaluated separately, Man-
sour et al., 1988) enables the evaluation of the
profiles of the model coefficients C; and Cj. For
each combination of two different components of
the slow part ®;;1, equation (3) can be written
as a system of two equations with two unknowns:
C; and C]. For, e.g., ij = 11 and ij = 22 this
equations system reads:
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Fig. 4 Profiles of C; and Cf coefficients in the fully
developed channel flow

Figure 4 shows the coefficients evaluated in
such a way for different combinations of the ®;; ;-
components. It is noted that for y™ < 50 all com-
ponent combinations gave very similar behaviour,
but for y* > 50 they start to deviate, indicating
the non-universality of the model given by equation
(3). The coefficient C; reaches the standard high-
Reynolds number value 1.7—1.8 away from the wall,
in a good agreement with the most of the model
proposals. Several low-Reynolds number models
analysed (CKL, LT and HJ) show reasonable agree-
ment with DNS result for C; over the whole flow,
especially the Craft et al. (2000) model, although
none of the models captures the sign change in C}
in the immediate wall vicinity, for y© < 10. The
Shih and Lumley model of the C; coefficient results
in a significant overprediction (up to 3.5), which is
the main reason for large deviations obtained with
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this model when performing the term-by-term com-
parison, Figs. 5-7. The evaluated coefficient Cj is
negative, apart from very close to the wall, show-
ing in fact an opposite behaviour from C;. A good
approximation is C] = —AsCj (the full lines in
Fig. 4b). Far from a wall the value of C] is close
to that proposed by Speziale et al. (SSG, 1991),
C] = —1.05, at least in the logarithmic region.
This is opposite from the model formulations pro-
posed by FLT, LT and LL, all resulting in a large
positive value. This deviation is obviously com-
pensated by the model of the rapid part, in view
of good agreement with DNS when the complete
pressure strain term ®;; is considered, Figs. 5-7.
We obtained similar behaviour by evaluating the
coefficients C; and C] from the entire term, using
the model of the pressure redistribution as a whole
(slow part + rapid part). We also performed simi-
lar evaluation of the coefficients in the rapid part,
but only for the linear model with three unknown
coefficients (not shown here).

The direct comparison of the models of the
pressure-strain redistribution in term-by-term man-
ner is shown in Fig. 5 for the fully developed
channel flow and in Figs. 6 and 7 for the flow

over a backward-facing step.
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Fig. 5 Models evaluation of the pressure-strain
term in the fully developed channel flow

Two locations along the step-wall were selected:
z/H = 4 which is in the recirculation zone whose
length is about zr/H = 6.28, and z/H = 19
corresponding to the "new” (recovering) boundary
layer, but still far from equilibrium (note the mod-
ified ®;;-profile compared with the channel flow).
All models predict the general shape of the term ®;;
fairly well for both flows. With exception of the SL
model, all model results follow the DNS data fairly
close. As already mentioned, the large value of
the C coefficient in the SL model causes almost



the complete deviation between model results and
DNS. The only low-Reynolds model tested here, the
HJ model, does not reproduce the change in sign
of all four components of the ®;; close to the wall
in the separation bubble. The performances of the
JH model, which is the only model of the fourth
order, was not analyzed here, because it does not
have a corresponding slow part being necessary for

prediction of the entire ®;;.
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Fig. 6 Pressure-strain term in the recirculation zone
(z/H = 4) behind a backward-facing step
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Fig. 7 Pressure-strain term in the recovery region
(z/H =19) in a flow over backward-facing step
The evaluation of these models by integrating
numerically the transport equations for the turbu-
lent stresses, using the DNS results for the mean
velocity and dissipation rate fields, as well as some
terms in the w;u;-budgets: turbulent transport
term and dissipation correlation, is in progress.
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Dissipation correlation

The most widely used model for the dissipation
tensor ¢;; is based on the assumed proportionality
between the small scale anisotropy - represented
by the deviatoric of the dissipation rate tensor
eij = €ij/€ —2/30;;, and the large scale anisotropy
represented by a;; (Hanjalic and Launder, 1976).
Using this formulation for the homogeneous part of
the dissipation correlation and adding its nonhomo-
geneous part, which is exactly defined as the half of
the molecular diffusion of the corresponding turbu-
lent stresses (Jovanovic et al., 1995), the following
algebraic relationship for €;; is obtained:

“1“1 ch

1-fs)= 51]5 + fo—=

where fs is the blending function which should
provide transition from the low-Re-number and
wall limit (@;w;e/k) and the high-Reynolds-number
limit (2/3€d;5). From the models of this kind, Jakir-
lic and Hanjalic model (HJ, 2001) with f, = 1 —
VAE? (A and E stand for the two-componentality
factors of the stress and dissipation anisotropies
respectively) was compared with the Hallback et
al. model (HGJ, 1990) and the DNS data for the
backward-facing step flow and the flow in an axially
rotating pipe. Hallback et al. model represents a
second order formulation as follows:

€ij = [1 + « <%A2 — g)] ajj—« <aikakj — %Az&j) (6)
This model is developed for homogeneous flows,
meaning that the dissipation rate € represents ac-
tually the homogeneous dissipation. We have mod-
ified the above HGJ expression by adding the non-
homogeneous part of the dissipation correlation to
account for the near wall effects, denoted as HGJ-M
model:

gj = (1- fs)

aeh (aikakj — §A2(5ij) + EDZ (7)
where fs =1+ a(A42/2 - 2/3), a = 3/4.

These two model formulations are compared in
the following figures. The Rotta’s isotropic, high-
Reynolds proposal (2/3ed;;) is also shown.

Fig. 8 shows the €11, €33 and €13 components
of the dissipation correlation in the axially rotating
pipe flow for a weak rotation rate (N = 0.61), be-
ing close to the non-rotating case. The HJ model
gives very good agreement with the DNS. It is also
noted that the HGJ-M model predicts better the
wall values of the g;;-components than the orig-
inal proposal denoted as HGJ, although still not
fully reproducing the exact limits. Fig. 9 compares
all €;5-components along the cross-section in the
separation bubble. Whereas almost identical val-
ues of the e99 and £33 components were obtained

Eij = ( + = DV (5)

“1“1 eh _
115 + fs——



by HJ model at the wall distance corresponding
roughly to the step height (as a consequence of
using the Rotta's high-Reynolds-number limits in
the HJ model), the non-linear model formulation by
Hallback et al. captured the dissipation anisotropy
in good agreement with the DNS data.

Rotating pipe, Re,=5860, N=0.61
Symbols: D S, Eggels et al.
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Fig. 8 Axially rotating pipe flow: HJ and HGJ mod-
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Fig. 9 Backward-facing step flow: HJ and HGJ
models at z/H = 4 within the separation bubble

CONCLUSIONS

A priori validation of key terms in several alge-
braic and differential stress models (ASM, DSM)
were performed using DNS data for three generic
flows: in a plane channel, axially rotating pipe and
behind a backward facing step. The subject of
validation were the coefficients G(™ of the basis
tensors Tz] in the ASMs, and the pressure-strain
and dissipation terms in the DSMs. These a pri-
ori tests enable direct verification of specific model
approximations, free from possible contamination
and compensating errors that might be introduced
by k and ¢ equations. While no conclusion on
the best model could be deduced, the test shows
merits and shortcomings of various models with re-
spect to each issue considered, enabling thus to
be addressed directly, without the contamination
of possible imperfections in the scale-providing k, €
or other equations.
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