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ABSTRACT

Eddy-viscosity turbulence models rest on a
constitutive equation providing the Reynolds stress
tensor from the mean velocity gradient tensor,
together with transport equations for turbulent
quantities such as k or €. The classical constitutive
equation is a linear stress-strain relation, leading to
linear k-& type models, which have clear limitations
to predict complex flows. Nonlinear generalizations
have been proposed, but have not often been directly
tested. Here we consider a quadratic nonlinear
constitutive equation; in this framework we focus on
the determination of its coefficients. For this we use
DNS data of simple shear flows and directly show
that nonlinear constitutive equations are necessary,
and study their coefficients using invariants.

INTRODUCTION: BOUSSINESQ'S
HYPOTHESIS

Reynolds (or Favre) averaging of Navier-Stokes
equation involves the Reynolds stress tensor
T =-p<uu; >, where pis the density and bold
notations are used for tensors, (u;) is the fluctuating
velocity and (U;) the mean velocity. To achieve
closure the stress tensor must be expressed from
mean velocity quantities.

Let us denote k =~-{T} the turbulent kinetic

energy, where {X} represents the trace of the matrix
(or tensor) X, and the traceless stress tensor:
R= %T+%kl. We introduce also the velocity

gradient tensor A =9U,/dx j and its symmetric
traceless part, the mean strain tensor:

1{oU;  dU;) 1
S=—| —+—|-={A} 1
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In case of incompressibility, {A} = 0. Boussinesq’s
hypothesis (Boussinesq, 1877) corresponds then to a

closure hypothesis with the following linear
constitutive equation:

R=v.S @)

where V. is a scalar called the eddy viscosity. This
linear relation between stress and strain is an
important hypothesis, coming from an analogy with
the constitutive equation for Newtonian fluids,
involving the viscous stress tensor and the viscosity
v: R,=vS.

In Equation (2), the eddy-viscosity is written for
classical k-¢ model (Launder and Spalding, 1974)

using two independent turbulent quantities such as k
and the dissipation €: v = C”k2 /€, where C, is a

non-dimensional quantity (in some recent models it
is no more constant). Closure is achieved with
transport equations for k and €. Here we do not

consider transport equations and focus on the
constitutive equation.

The k-¢ two-equations turbulence models are
widely used for turbulence modeling in engineering,
despite their clear shortcomings for complex flow
prediction (see for reviews Wilcox, 1998; Piquet,
1999; Pope, 2000). Generalizations have involved
modifications of transport equations, and in parallel
the replacement of the linear relation (2) by
nonlinear constitutive equations. We present the
latter below before discussing them directly using
numerical and experimental data.

NONLINEAR CONSTITUTIVE
EQUATIONS

Anisotropy of the Reynolds stress tensor

One of the main deficiencies of linear models is their
inability to produce an anisotropic Reynolds stress
tensor for simple shear flows. As a simple example,
when only one component of the velocity gradient
tensor is non-zero (dU(y)/dy=a) and the shear stress
T=-<uv >, we have:

—Z—k—<u2> T 0
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showing that Equation (2) can be verified only when
the diagonal of R vanishes, corresponding to
isotropic normal stresses (see e.g. Nisizima and
Yoshizawa, 1986; Speziale, 1987). Whenever
normal stresses are anisotropic for these simple shear
situations, Boussinesq's hypothesis does not apply.
Since most experimental and DNS databases present
anisotropic normal stresses, it can be seen that even
for simple shear flows a nonlinear constitutive
equation is needed.
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Nonlinear constitutive equation: general
3D case. Since Pope (1975), it is recognized that
invariant theory (and especially results obtained in
the fifties by Rivlin and Spencer, see Spencer, 1971)
can be used in the framework of turbulence
modeling to represent the stress tensor as a
development into a tensor basis composed of no
more than 10 basis tensors. This provides the
following general development:
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where a; are scalar functions and the tensors of the
basis are given by:

10
i=1

T, =S T6=w25+sw2—-2%1
T,=SW-WS T, =WSW?-W>SW

T, = §? -%1 T, = SWS? - S’WS 6)
T,=w -2 T, = Wis? + s2w? - 25 g

Ts = WS? -S’W T, = WS’W? - W2§’W

where W=A-S is the skew symmetric part of the
velocity gradient tensor. These tensors are all
symmetric and traceless, and are all supposed to be
mutually independent. The scalars introduced are
invariants of the flow. All the invariants involving
products of strain and vorticity tensors are the
following:

n ={8%} m,={W?)
N, ={W?} ng={W8?) ©)
N, ={S%)

Other invariants are also needed, involving the stress
tensor:

w={R’)  p,=(RS’

Wy ={RS}  ps={RW?)

;= {RSW} p, = {RWS?}
The main points characterizing the nonlinear models
are the choice of a tensor basis among the 10 terms
given in Equation (6) and an expression for the
coefficients a; in Equation (5) as function of k, ¢

(©)
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and the invariants m;. The linear constitutive
equation corresponds to retaining only T, as tensor
basis. Quadratic models correspond to the choice T-
T4. It has been argued that the term T, should not
appear in the tensor basis since it leads to physically
inconsistent results in rotating flows (Speziale,
1998); in this case quadratic models comprise only 3
terms. Cubic models include also tensors Ts and T,
corresponding to a 5-terms basis. Quartic models
add three more terms (T;- Ty) and quintic models
one more term (T)o); these terms have not yet been
added in practical model implementation, and up to
now only quadratic and cubic nonlinear models have
been implemented and tested.

The expressions giving the coefficients in front of
the tensor basis are sometimes completely ad hoc,
and in other occasions, extrapolated from fits
performed in very special test cases. These scalar
coefficients are then clearly the weak point of non-
linear eddy-viscosity models, since it is of little use
to have the correct tensor basis if the magnitude of
the coefficients is not correctly modeled. Below we
apply and adapt a projection method in order to
better estimate the coefficients from the invariants.

Quadratic constitutive equation and
projection onto the tensor basis. A new
approach has been initiated by Jongen and Gatski
(1998) in the framework of explicit algebraic stress
models. This assumes an equilibrium or near-
equilibrium condition (production = dissipation),
which is not valid for inhomogeneous or complex
flows in general. Therefore, we do not discuss here
explicit algebraic stress models, but the projection
procedure proposed can be applied also to nonlinear
eddy-viscosity models. Better than guessing a
possible form for the coefficients, Jongen and Gatski
proposed a mathematical procedure to obtain an
exact form for the coefficients. It consists in
projecting, through a scalar product for tensors or
matrices, the constitutive equation onto the tensor
basis. The scalar product can be written:

[A.B]={A'B} = A;B, ©
with the associated norm:
12 12
IAl=[A,A]"" = (Aiinj) (10)

The projection method is the following: apply
successively to Equation (5) a scalar product with
each term of the tensor basis. This then transforms
this tensor equation into a system of scalar equations
that can be solved. The left-hand side of the scalar
equation involves an invariant {RTi} which can be
All the
coefficients obtained are written using invariants
given in Equations (7) and (8). When inverting the
linear system, the coefficients are obtained as
rational function of the invariants.

expressed using the invariants ;.



In the following we consider a quadratic model
with 3 terms basis. Let us rewrite the quadratic
constitutive equation in the following way:

R= st—B(sw—ws)—y(s2 —%I) an

with the coefficients given by the system:

153 n 0 M |V
2u3 1= 0 mym, —6n; 0 -B| (12)
Mg N3 0 %Thz =Y
having as solution:
Voo = Ni°Hy =63k
T 3 2
n;” —6ms
- T2 (13)
nM, —6Ms
- 6(kon3 —Miks)
n,’ —6n,°

For purely 2D flows (for which S has one vanishing
eigenvalue) some invariants given above vanish or
are no more independent of others: 1; =0, Ny =0
and M5 =mM,/2, as shown by Jongen and Gatski
(1998). Then the 3-terms development in Equation
(11) is complete, the matrix in Equation (12)
becomes diagonal, and the coefficients in Equation
(13) have a simpler form. This results in the
following simple expression, which is a general
identity for 2D flows:

R=F2g B g e, (14)
oMM LTI
These expressions provide the exact coefficient
functions, and can be used to provide a best
approximation of these functions. This is discussed
below.

Comments on nonlinear constitutive
equations. First of all, the choice of the tensors is
certainly as important as the choice of a functional
dependence for the coefficients. It appears that most
nonlinear models have so far chosen coefficients in a
quite ad hoc manner, since:

e The first quadratic models have simply chosen
constant coefficients (Yoshizawa, 1984;
Speziale, 1987; Myong and Kasagi, 1990;
Rubinstein and Baron, 1990).

e Other nonlinear models (e.g. Shih and
Lumley, 1993; Gatski and Speziale, 1993;
Craft et al,, 1996; Apsley and Leschziner,
1998) have proposed variable coefficients,
depending on invariants. But the functions
chosen are often ad hoc, since they are
introduced only for they limit behaviour in
some special situations. The coefficients have
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then been calibrated in special situations (such
as channel flow) assuming that they are the
same for other more complex flows.

There is clearly too much arbitrariness in these
choices, and it seems desirable to have a more
general and rigorous method to determine the
coefficients. The relations given by Equation (13)
are exact but cannot be used as they are in eddy-
viscosity turbulence models, since there is a
dependence on the stress tensor through the
invariants [, .

On the other hand, Equation (13) can be used to
obtain the coefficients from experimental or DNS
data (see some first application in Schmitt and
Hirsch, 2000; 2001). General functions depending
on the geometry, k, € and the invariants 7;, can be
extracted from the data, in a way which can then be
implemented into eddy viscosity turbulence models.
We apply below this procedure to DNS data
corresponding to simple shear flows near the wall.

APPLICATION TO DNS DATA OF
SIMPLE SHEAR FLOWS

Superposition of turbulent profiles for
different DNS databases. As a direct application
of the previous procedure, we use DNS data of
simple shear flows possessing only one non-zero
velocity gradient (see also Schmitt and Hirsch,
2001). The first data set (denoted CO in the
following) corresponds to a turbulent plane Couette
flow at a Reynolds number Re=1300, with a friction
Reynolds number Re =82 (Bech et al, 1995). The
second data set (denoted CF87 in the following)
corresponds to a turbulent channel flow at a
Reynolds number Re=3250 corresponding to a
friction Reynolds number of Re,=180 (Kim, Moin
and Moser, 1987), and the third (denoted CF99) is
the same flow at larger Reynolds number: Re = 10*
corresponding to a friction Reynolds number of
Re =590 (Moser, Kim and Mansour, 1999). The last
data set (denoted BL in the following) is a turbulent
boundary layer on a flat plate, with zero pressure
gradient, with a Reynolds number of Re =2.10°, or
based on the momentum thickness 6, Reg=1410
(Spalart, 1988). The test cases chosen correspond to
a panel of Reynolds numbers going from 10° to 10°.
The friction Reynolds numbers above are defined
using the friction velocity u, = /T, /p where 1, is
the wall shear stress. In the following, all the
quantities are non-dimensionalized, using u, or
u.?; the distance to the wall is expressed as usual in
wall units (also a local Reynolds number)
y =yu /v,

Figure 1 shows the mean velocity profiles U(y™)
for the inner layer (y* <500) for the 4 data sets,
showing the log-law and the viscous regions. Figure



2 represents the normal stresses for the 4 data sets,
showing that the anisotropy of the stresses is
pronounced and indicating indeed that, as discussed
above, a nonlinear constitutive equation is needed.
Figure 3 shows the shear stress 1. We first observe
that, despite the different flow configurations and
different Reynolds numbers, the profiles in Figures
1-3 superpose rather well for small values of y*:
this is especially true for the mean velocity profile;
the superposition is also quite good for the stresses.
The behavior shown in Figures 2 and 3 for small y*
is consistent with classical results obtained from
Taylor expansion: <u’> and <w?> are
proportional to the square of y*, while <v? > and
Tare proportional to its third power (for y* <10).
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Figure 1 : Mean velocity profiles U(y™").
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Figure 3 : The shear stress 1=-<uv>.
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Estimation of the coefficients in a
quadratic constitutive equation. As a direct
test of Boussinesq's hypothesis, we first represent
here the normalized scalar product of R and S
tensors (it can be also interpreted as the cosine of an
"angle" between R and S, see Schmitt and Hirsch,
2000; 2001):

{RS} _ 1,

IRIIST

where ., is the kinetic energy production. The
different invariants (defined in Equations (7) and
(8)) can be estimated from the turbulence statistics.
We provide here some of them, which will be useful
in the following. These are:

(15)

Prs =

Ui 5 5 o
a’ 2 2
u3=——4—(<u >—-<v >) (16)
2
a 2 2
=——|=k-<w" >
Ha 4(3 w )

where a=dU/dy and k is the kinetic energy.
Equations (14) and (16) then give:

v by 2
m a
= ﬂu; =—12-(< ws>—<v? >) an
{ a
Y= _1?;4 =%(§k—<w2 >j
1 a

Equations (15) and (16) provide pgg, which is
represented in Figure 4; in the estimation of the
Reynolds stress, we included the normalized viscous
stress R, /v=S, so that for very small values of

y*, the viscous limit is reached. Since prs=1 for
Boussinesq's hypothesis, the smaller pgg, the more
nonlinear terms are important. This figure directly
shows that for y*>2, nonlinear terms are needed.

This parameter is especially small for 3<y*<70,
showing that for these distances to the wall
(corresponding roughly to the buffer layer) the linear
term is of little relative weight. There is a minimum
at y" =10.5+0.5.

Figures 5-7 show the 3 coefficients in Equation
(17) in log-log plots. The rather good superposition
obtained for the 4 data sets indicates that these
coefficients may have some universal form for near-
wall flows and for various Reynolds numbers, at
least in the inner layer considered here. Fits of these
experimental curves may be easily performed,
providing a general formulation for the nonlinear
constitutive equation for near-wall turbulence. We
have performed power-law fits for small values of

y*: as given by Taylor-expansion (see Notter and
Sleicher, 1971; Patel, Rodi and Scheuerer, 1985), a



behaviour of vy /vec(y*)? is detected for y*<I15.
The coefficient b varies as P o< (y*)* for y*<15, as
expected from the fact that a=1 close to the wall,
with the Taylor expansions < u? >oc (y* )* and
<v? >oc (y“L)3 (see e.g. Pope, 2000). On the other
hand, we find for y a development as 7y o< (y*)>° for
the whole viscous wall region (y*<50), different
from the (y*)? law expected from Taylor expansion
(this law is recovered for 2 datasets for y*<1).
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Figure 4 : The ratio pgpg, measure of the nonlinear
terms.
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Figure 5 : The normalized eddy-viscosity vy /v in

log-log plot. The equation of the straight line is
0.002(y+)*.

A mixing-length formulation with no
viscous damping function. Let us finally add a
comment about mixing-length formulation for the
eddy-viscosity. With our notation, this is usually
written as:

YT, )a (18)
Vv

Since a=1 in the viscous sublayer (y*<5), the cubic

development for the eddy-viscosity corresponds
simply to a development for the mixing-length close

to the wall:
+\3/2
m=é{lJ (19)

where ¢, and y, are constants. With this
formulation, no Van Driest damping function is
needed close to the wall to recover the correct
expansion for the eddy-viscosity. Using this
expression for the mixing-length, the velocity profile
given by (see e.g. Pope, 2000):

+

Y 2dr

o 1+ 1+4(,, (1)
has a development for small y* as

Ut(y") = (20)

Uty =y A +. (@1
as expected (see Pope, 2000, p. 288).
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Figure 6 : The coefficient B in log-log plot. The
equation of the straight line is 0.25(y+)>.
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Figure 7 : The coefficient y in log-log plot. The
equation of the straight line is 0.09(y+)*>.

CONCLUSIONS

We directly considered the constitutive equation for
4 different DNS databases corresponding to 3
different near-wall flows (boundary-layer, channel
flow, Couette flow), at Reynolds numbers ranging
from 10° to 10°. We first showed that, except very
close to the wall (y*<2), the linear constitutive
equation is not adequate, contrary to what is often
implicitly assumed. We have further verified that the
coefficients in a quadratic development are similar



for the 4 test cases. This corresponds to a new type
of experimental wall functions, which are given
directly for a nonlinear constitutive equation. This
may directly be implemented into turbulence
models.
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