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ABSTRACT

A DNS-based new model of the transport equa-
tion for the turbulence energy dissipation rate € and
an algebraic expression for its tensor €;;, all satisfy-
ing the wall-limits without using topological param-
eters, are derived in terms of their "homogeneous’
parts €” and ef] The approach is based on the two-
point velocity covariance analysis of Jovanovié, Ye
and Durst (1995), with re-interpretation of the vis-
cous term. A priori evaluation of &;; using DNS
data for quantities other than ¢;;, and the compu-
tation with the full uiuj—shmodel of flows in a pipe,
plane channel, boundary layer, behind a backward-
facing step and in an axially-rotating pipe, show
good near-wall behavior of all terms in accord with
the DNS data.

INTRODUCTION

The transport equation for turbulence energy
dissipation rate € has been widely used to close
single-point k — ¢ eddy-viscosity and second-
moment (Reynolds stress) models. Yet, the term-
by-term scrutiny of even simple equilibrium wall
flows shows that none of the modelled term reflects
the corresponding terms in the exact equation for €.
In this paper we revisit the dissipation equation for
low-Re-number near-wall flows following a different
approach with two novelties. First, the derivation
of the equation for € has been based on the two-
point analysis (Jovanovic et al. 1995) which leads
to the equation for the 'homogeneous’ dissipation
rate

Pk 1

(1)

where Dy is the viscous diffusion of the kinetic
energy of turbulence. Second, a term-by-term mod-
elling for the individual terms in the € equation
is presented, combined with the algebraic relation-
ship for g;; in term of el stress and dissipation
tensor invariants and turbulence Reynolds number
Re;. This interpretation offers a better reproduc-
tion of the DNS results as well as other advantages.
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Two-point interpretation of ¢;;

The viscous term in the exact transport equation
for the turbulent stress tensor w;w; is usually split
into the viscous diffusion and dissipation rate

Ou; Ou;j
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The same term in the transport equation for the
two-point correlation (u;)4(u;)B expressed in the
local coordinate system with the origin at midpoint
between A and B, with & = zf — z and 21 =
1/2(z + zB), reads
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In homogeneous turbulence all derivatives with re-
spect to (zx)ap vanish and, for A — B, VZ{;-B —
Vij represents the dissipation in a homogeneous
flow, eh:
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In inhomogeneous turbulence, for A — B:
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Comparison with the single-point derivation, equa-
tion (2), yields:

1

5 D% (6)
The dissipation tensor has contributions due to flow
inhomogeneity that is treated as diffusive transport.
Clearly, no algebraic interpolation for the &;; can

account for the dissipation due to gradients of the
Reynolds stresses.
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Modelling Implications

We can now apply the common form of the
algebraic expression for ¢;;, but in terms of the ho-
mogeneous part of the dissipation rate tensor,

= (1 _fs) (7)

The components of £;; can now be obtained from
equation (6) where DY is the viscous diffusion
of the corresponding stress component, computed
from the solution of the stress transport equations.
The advantage of using this approach is apparent:
€ij satisfies exactly the wall-limits of each nor-
malized component (5”/6)(13/%) (no sum on
repeated indices) which is 1 for i=j=1, i=j = 3,
andi=1,j=3andequals2ifi =1, j =2 and
t =2, j = 3. A slight discrepancy appears for the
wall-normal component, i = j = 2, for which the
model gives e99/e-k/u3 = 3.5, instead of the exact
4,

'Uq'uj h,
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Obtaining ¢"

Equations (6) and (7) enable now to determine
€ij. To close these expressions it is necessary to
provide . The computationally most convenient
way to obtain " is to solve its own transport equa-
tion: in fact the stress transport equations can be
written with el as the sink term with correspond-
ing reduction of the viscous diffusion term by factor
of two:

Duiuj _ 1 0 ( auiu]') h
D

Derivation of the equation for € from the equation
for the two-point correlation yields approximately
(some higher order terms omitted, Jovanovié et al.,
1995):
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where De/Dt can be replaced by the RHS of
the conventional or any other low-Re-number e-
equation. It should be noted that the definition of £
(the "isotropic’ part of dissipation rate, &y = 0),
used in some models to handle the near wall be-
haviour and the wall boundary conditions should
be modified, i.e:

kY2 * okY/2\ |
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In addition to better physical foundation of the e”
equation, major advantage is achieved in evaluating
the individual dissipation rate components ¢;; or

511, which become important for second-moment
closures.

Now a model for the € equation is required. A
more accurate term by term modelling for this equa-
tion is given in the next section. We show that
decisive advantages are achieved if the equation for
the homogeneous dissipation rate € is solved in-
stead of total €. In fact, in the final model we
abandon completely the € as a variable and use in-
stead €” as the scale providing variable, as will be
shown below. However, the discussion that follows
is applicable equally to € and " equations.

TERM-BY-TERM MODELLING OF THE ¢
EQUATION .

A reformulation of some of the terms in the exact
equation for the dissipation rate ¢ (see e.g. Man-
sour et al., 1988, for details) is now described.

The mixed production term
First consider the ‘mixed’ production term
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This term is regarded as negligible in high-Re-
number flows. The major production of &, P4
(Eq. 19) , associated with the self-stretching of the
fluctuating vortices is usually modelled in terms of
the energy production Py = —u;w;0U;/0x;, scaled
with the characteristic turbulence time scale k/¢.

The first term in the brackets is in fact €;;. The
second term is closely related to €;; - they con-
tain common terms. Now, if &;; can be modelled
satisfactory by equation (6), this term can be re-
tained in its exact form. Of course, away from the
wall and at high Re numbers, €;; becomes isotropic
irrespective of the stress anisotropy and this term
is not sufficient to account for total production of
€ so that the standard production term should be
retained, although with a smaller coefficient. The
new model consists of the sum of the new and stan-
dard term, with C;1 =1,

oU; oU; €
—6U5;j——L0ﬂﬁESEjE (12)

P! +P=
The new model of P} + P2, equation (12) repro-
duces very well the DNS data for a plane channel,
both using the total dissipation ¢, Fig. la, or ho-
mogeneous dissipation ¢”, Fig. 1b.

The new model is useful in non-equilibrium flows
subjected to strong linear straining. This becomes

obvious if P! is expanded into components. For
2-D flows:

(9U1 aUl
P1 = — - - — 1
f €12 2 (611 622)61:1 ( 3)
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Fig. 1 The new model of (P} + P2) for conventional
(a) and new (b) e-equation

Hanjali¢ and Launder (1980) proposed to sen-
sitize the production P. to irrotational strain
by increasing the coefficient C.; from 1.44 to
Cl, = 4.44, and introduced a new term, (C.; —
Ce1)Cu k5, (45 is mean flow vorticity). The
net effect is visible in two-dimensional flows, where
in addition to the conventional production, another
source term, (C; — Ce1)(u? —u2)0U; 8z appears
in the € equation.

Such an enhancement of the production of € is
now accounted by the new formulation of P!, and

no additional term is necessary. While w1uz/(u2 —

u_%) is of the order of magnitude of 1, making the

production by both the rotational and irrotational
strain of equal importance, €12/(€11 — €22) is much
smaller than 1, except very close to the wall (Han-
jali¢ and Jakirli¢, 1993). Hence, the term will itself
distinguish the effect of the irrotational from the
rotational strain in the production of .

A direct validation of Eq. (12) for more com-
plex flows is missing because of the lack of DNS
or other data. However, some insight can be
gained by comparing the terms in Eq. (12) with
the conventional model of the production of ¢, i.e.
P! + P? = 1.44Pe/k. Fig. 2 shows such a com-
parison within the separation bubble in a back-step
flow.

The gradient production term
P3

The gradient production of ¢, denoted as Py,

reads exactly

(14)
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Fig. 2 The new and traditional models of £ (P! +
P2) for new e-equation at two locations in the back-
step flow

Current practice assumes a simple gradient
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yielding the term with the squared second veloc-

ity derivative. Such a model does not allow for

a proper sign of the curvature of the mean ve-

locity profile. Bernard's vorticity transport theory

(Bernard, 1990) provides a more rational method.

The turbulent velocity gradient flux is expanded
8“1 Ouru;

into
le - ( oz

where sg; and wy; are the fluctuating strain rate and
vorticity respectively. The first term is now exact.
The second term needs modelling. The third term
is omitted since it is antisymmetric in its indices
while the velocity curvature term is symmetric. For
the 2D near-equilibrium wall layer the term w1323
can be expanded, using the continuity, to produce

19(uf - u})
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where w; = eijk%i-. The first two terms can be

neglected because of spanwise and streamwise ho-
mogeneity. The results of Bernard (1990) is used
to close uzws:

1 Q4 6u§ 3U1
21+ Q3Q4(0U1/0x2)? O3 Oz
where 3 and Q4 are the Lagrangian integral scales.
For a fully developed channel flow, Bernard (1990)
recommended @3 = 0.65 and Q4 = 10.8.

The profile of uzw; obtained from expression
(17) for the channel flow agrees qualitatively well
with the DNS data (not shown here). However, the
insertion of w3ws in equation (15) and subsequently
in equation (14) for the complete production term,
yields P2 which differs both in magnitude and in
sign from the DNS results in the near-wall region.
A substantial improvement is achieved if Ou}/ 0z,

is replaced by 8u2/8x2, and the Bernard time scale

function Q4/(1 + Q3Q4(8U1/8:v2) ) by k/e, Fig.
3a, yielding the expression for P3
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The plot of each term in expression (18) and of
their sum, i.e. the complete model of P.3 computed
from DNS data for a plane channel, is presented
in Fig. 3b, showing good agreement with the DNS.
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Fig. 3 Modified new model of (a) vorticity flux
uzwz and (b) "gradient” production of € - P3

Production - destruction term

For the two remaining terms, representing the
difference between the turbulent production and
viscous destruction of &, which represents the major
source of dissipation at high Re numbers, Hanjalié
and Launder (1976) proposed a joint model

Bu; Ou; Juy, 2u; \?
P4 Y = 1 Ot 7
€ —2v al‘k axl 8:z:l 2( 8wka$k>
- 52f5? (19)
where & = ¢ — 20(0k'/2/8z;)?. The plot of Eq.

(19) with the original function f. and the modi-
fied one proposed by Coleman and Mansour (1993),
shows poor agreement close to the wall for both
models, Fig 4a. For illustration, the proposal of
Durbin (1991) to replace in the model (19) the time
scale 7 = k/e by Kolmogorov scale 7 = /v/e,
when 7 becomes larger than 7/6, is presented,
showing also poor agreement. In contrast, the ap-
plication of the same model using the homogeneous
dissipation rate, i.e. —Cyof.c"é"/k (see eq. (10)
for €M), yields much better agreement with the DNS
data, as shown in Fig. 4b.

The complete " equation

The final form of the new model dissipation
equation, expressed solely in terms of " can now
be written as

~
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This equation can now be solved with the model
equation for turbulent stress w;w; that contains
conventional modifications for near wall and vis-

cosity effects, but with Efj as the sink term and

with the factor 1/2 in front of the viscous diffusion
term, as shown in equation (8). It is noted that the
full dissipation rate € does not appear at all in the
model and need not be considered.

MODEL PERFORMANCE

Flg 5 shows an a priori test of the equation for
gh alone for a plane channel: only equation (20) is
solved using DNS data for all input variables. Both
e and € show very good agreement with DNS.

Next, in Figs 6 to 8 we present some results com-
puted with the new % equation (20) in conjunction
with the low-Re- numiaer model for w;u; equations
of Hanjali¢ and Jakirli¢ (1995, 1998), for fully de-
veloped channel and pipe flows, flow in an axially
rotating pipe, and for flow over backward-facing
step.
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We regard these results as satisfactory, particu-
larly in view of the fact that a single model with
a single set of empirical coefficients and functions
was used to compute several flows with distinct fea-
tures, including separation, reattachment and flow
rotation.

0 5

Admittedly, there is still room for improvement,
e.g. for rotating pipe, and for reproducing bet-
ter the DNS value of dissipation at the wall. Two
sources of discrepancies were discovered: inade-
quate representation of off-diagonal components of
6%, and a slight imbalance in the model equation
for the wall-normal stress usus at the wall. The
latter affects only the asymptotic wall behaviour
of uzuz and has only a marginal effect on other
variables. This can be cured by introducing e.g.
the 'pressure diffusion’ correction of Launder and
Tselepidakis (1993) The problem of off-diagonal
components of 5 is discussed briefly in the next
section.

REVISION OF THE MODEL FOR ¢;;

The model (7) for ¢;; reproduces the DNS data
for diagonal components in most flows considered,
but less satisfactory for the off-diagonal ones (here



€12). In the here proposed approach g5 plays an
important role in reproducing the production term
P} close to a solid wall. We propose an improve-
ment in the model of &;; with a particular focus on
off-diagonal components, by addition of an extra
term to equation, i.e.

“J

E:L] [( fs) 51] + fs + 2f SZJTK:l 6h (21)

Adopting the newly introduced function as

)7} e

yields a significant improvement in the reproduc-
tion of €12 in, e.g., a backward-facing step flow, as
shown in Fig. 9.
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tained by new model (equation 21) in the recovery
region of the back-step flow

Expression (21) follows from the proposal of
Hanjali¢ and Launder (1980) to enhance the ef-
fect of irrotational strain in the ¢ equation by
adding the term Ck$;;Q;;. Combined with P} =
€:j(0U;/0z;) (equation 11), these two terms re-
duce for thin shear flows (for Q; ~ S;; =
%an/afL’j) to

L I

.001 .01

oU;
(5ij + Cf78S;j¢) 8_11:; (23)
Replacing €;; by expression (7) and 7 by 7k, applied
to €/ instead to ¢, leads to expression (21).

The above proposal serves more as an illustration
of the necessity to account for the effect of mean
rate of strain on ¢;; rather than to propose a new
model. Further work, with more extensive testing
in a wider variety of flows, is needed before a more
definite model is proposed.
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CONCLUSIONS

Based on two-point covariance analysis and re-
formulation of the models of each term using some
arguments from the vorticity transport theory, a
transport equation is derived homogeneous dissi-
pation e = ¢ — 1/2v(0%k/dx;0x;), which should
replace the classic € equation in both the k — ¢
and Reynolds stress models (RSM) for near-wall
flows. An algebraic model for g;; is also pro-
posed for the RSM. A consistent use of " and

fj in the complete model provides several bene-

fits: it ensures to satisfy wall-limits without using
any topology parameter, reduces the necessity for
empirical inputs and enables better term-by-term
reproduction of DNS data. Both, a priori and
full model computations of turbulent flows in a
plane channel, constant-pressure boundary layer,
behind a backward-facing step and in axially ro-
tating pipe, produced results for second-moment
turbulence correlations and stress budget in good
agreement with the available DNS results.
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