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ABSTRACT

The mixing efficiency in a turbulent mixing
layer is quantified by monitoring the surface-
area of level-sets of scalar fields. The Laplace
transform is applied to numerically calculate
integrals over arbitrary level-sets. The analysis
includes both direct and large-eddy simulation
and is used to assess the suitability of spe-
cific subgrid parameterizations in relation to
predicting mixing efficiency. We incorporate
several subgrid models in the comparison, e.g.
the scale similarity model of Bardina, the dy-
namic eddy-viscosity model and the dynamic
mixed model. For accurate predictions, dy-
namic models are favored. It is observed that
the ratio between LES-filterwidth A and grid-
spacing h has a considerable influence; a ra-
tio of four appears suitable. Gravity driven
flows can be modeled by ‘active’ scalar fields
which couple to the momentum and energy
equations. The significant increase in mixing
efficiency due to buoyancy effects is directly
quantified.

INTRODUCTION

In recent years, advances in computational
power and numerical methods have brought

*Also: Department of Engineering, Queen Mary College,
University of London, Mile End Road, London E1 4NS, United
Kingdom

187

about the possibility to simulate turbulent
fluid motion in all its detail by means of so-
called direct numerical simulation (DNS). This
approach gives rise to extensive data-bases, e.g.
containing large numbers of snapshots of the
instantaneous solution which form the raw ma-
terial for further analysis. In this paper we
concentrate on dynamical features of global
properties of evolving level-sets in turbulent
flow. This information can be used to quan-
tify the changes in complexity of a flow as a
function of time and spatial coordinate and
can also characterize dominant behavior e.g.
in mixing or in dispersive processes. In ad-
dition, properties of an evolving interface are
of central importance e.g. in combustion and
chemistry and in relation to multi-phase flows.

This paper contains three main elements.
First, a new method for calculating iso-surface
integrals is presented. This method involves
Laplace transform (Vervisch et al. 1994), and
a new, locally exact, quadrature approach to
treat the rapidly oscillating integrals that arise.
The surface area of level-sets of scalar fields
can be calculated accurately, including contri-
butions arising from very intense and localized
turbulent events.

The second main point is related to the use
of Large-Eddy Simulation (LES) for the predic-
tion of mixing efficiency. In LES one attempts
to predict generic flow features and to obtain



a smoothed representation of the solution at
a fraction of the computational costs associ-
ated with DNS. This can only be achieved at
the expense of introducing a subgrid-model for
the turbulent stresses. Problems which involve
details of turbulent mixing, possibly in combi-
nation with chemical reactions such as com-
bustion, or turbulent dispersion of polluting
agents, may require a more detailed represen-
tation of the smallest structures in the flow.
This could require extensions of ‘traditional’
subgrid modeling or numerical treatment. The
suitability of present-day subgrid modeling and
the appropriate ratio between LES-filterwidth
A and grid-spacing h will be considered.

The third main point in this paper involves
quantifying the influence of buoyancy effects on
mixing efficiency. Gravity currents of heavy
fluid which propagate in an environment of
lighter fluid are encountered in numerous geo-
physical applications. Likewise this type of
flows arises in many problems related to in-
dustrial safety and environmental protection
(Hartel et al., 2000). The buoyancy effects on
mixing will be quantified by evaluating the sur-
face area of the interface between the ‘heavy’
and the ‘light’ fluid, as a function of time. It is
shown that buoyancy can lead to significantly
enhanced mixing. Depending on the Froude
number, a variation in the mixing rate of a
factor of about three can readily be obtained.

The organization of this paper is as follows.
First we introduce the method to evaluate sur-
face integrals over arbitrary iso-surfaces. Then
we formulate the evolution of active and pas-
sive scalars and illustrate the global scenario
of the flow. Results of DNS and LES predic-
tions of the mixing efficiency of passive scalars
will be discussed afterwards. Moreover, we ap-
ply the approach to mixing in gravity driven
mixing layers. Finally, we will summarize our
findings.

MIXING EFFICIENCY AND ISO-SURFACE
INTEGRALS

We concentrate on dynamical features of so-
called ‘global’ variables. The global variable
corresponding to a density function f and the
level-set S(a,t) is denoted by If(a,t). Here
S(a,t) is defined by the set where F(x,t) = a
for a ‘level-function’ F. The global variable
I¢(a,t) is defined as

7(a,t) / dA f(x,t)
S(a,t)

_ /V dx 6(F(x,t) — a)|VF(x,1)|f(x,) (1)

where V is a fixed and arbitrary volume which
encloses the level-set S(a,t). The evolution of
I¢(a,t) is governed by

9ls(a,t) +ﬁ /dx 5(F—a)f|VFI%I;:)
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Here we can identify different transport terms.
In specific applications, such as the mixing of
scalar fields, the present quadrature method
allows for an accurate assessment of the mag-
nitude of the various transport mechanisms.

If one wants to evaluate If(a,t) as defined
in (1) or any of the fluxes in (2) one can use the
Laplace transform in order to efficiently deal
with the delta-function that arises in the inte-
grand. After some calculation one then arrives
at

If(a,t) — %/OoodT(/deflvFle_(F—a)
x cos(T(F — a))) (3)

The global variable I¢(a,t) is written as a dou-
ble integral; one over the volume V and one
over the variable 7. If we divide the volume
V into a large number of grid-cells €, we
can split the integral in (3) into integrals over
grid-cells which can each be treated with the
new, locally exact, quadrature method. De-
tails of this approach will be published else-
where (Geurts, 2001).

This method to evaluate iso-surface inte-
grals can be adopted to determine the area of
the surface separating regions with high values
of a scalar field from regions with low values.
By monitoring this surface during transitional
and turbulent flow in a mixing layer the mixing
efficiency n can be quantified. We may intro-

duce
n(a,t) = I(a,t)/1(a,0) (4)

to define the amount of ‘stretching’ of the iso-
surface corresponding to F(x,t) = a. Here we
consider the mixing of two fluids. The region
occupied by fluid ‘A’ or fluid ‘B’ can be charac-
terized effectively by introducing a scalar field
¢ with values ranging between 0 and 1. We
adopt the convention that fluid ‘A’ corresponds
to a value of ¢ = 0 and fluid ‘B’ is identified
by ¢ = 1. In the sequel we refer to ‘A’ as the
carrier fluid with density p and ‘B’ the carried
fluid with density p;, where the subscript ‘A’
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denotes ‘heavy’, which is relevant in case buoy-
ancy effects are included. As a definition of the
interface between the two fluids we adopt the
value ¢ = 1/2 in the rest of this paper. The de-
termination of the surface area of the interface
between ‘A’ and ‘B’ can be used to quantify
the increased complexity of the flow-field dur-
ing mixing.

ACTIVE AND PASSIVE SCALARS IN A
MIXING LAYER

In many applications, gravity driven cur-
rents may arise in which a heavy fluid can
propagate in a surrounding lighter fluid under
the influence of gravity. The effects of gravity
on the flow can be represented through the in-
troduction of source terms in the momentum
and energy equations. In particular, using the
Boussinesq approximation we have (Gebhart et
al., 1979):

Op + i (puj) =0

apcd;
9 (pwi) + 0;(puiu;j) + 0ip — Oj035 = — 1[;732
apcu
Ore + 0j((e + p)uj) — 0j(oiju;) + 0jq5 = —————}'K;r;

where we introduced the relative density varia-
tion parameter a = (pp — p)/p and the Froude
number Fr = U*/y/g*L* with ¢g* the gravita-
tional constant and U*, L* a reference velocity
and length scale respectively. Here, we con-
sider the gravitational force to act in the neg-
ative xo direction and use o = 1. Moreover,
0; and 0; denote partial derivatives with re-
spect to time ¢ and Cartesian coordinate z;
respectively. Also, p denotes the density of
the ‘lighter’ fluid, u; the velocity component
in the z; direction and o;; is the viscous stress
tensor defined by o;; = Sj;/Re with Re the
Reynolds number and S;; the strain rate ten-
sor. Moreover, p is the pressure, e the total
energy density and g¢; the heat flux vector.
For further details see Vreman et al. (1997).
Finally, ¢ denotes a scalar field which varies
between 0 and 1 and which relates to the local
density p as p = (1—c)p+cpp. The scalar field
c is assumed to evolve according to

1
Oe(pc) + 05(ujpc) — =-dj¢ =0 (5)

where Sc denotes the Schmidt number which
characterizes molecular diffusion transport.
The scalar field ¢ is convected by the flow field
u; and the finer features of ¢ such as regions of
large gradients are smoothed by the action of
diffusion effects.

189

In this paper we identify two types of scalar
fields. If the Froude number F'r tends to infin-
ity, we observe that the source terms in the mo-
mentum and energy equation reduce to zero.
In that case there is only a one-way coupling
and the scalar field will be referred to as ‘pas-
sive’. At finite Froude number the scalar field
is seen as ‘active’ and determines part of the
flux of the momentum and energy equation, i.e.
there is a two-way coupling.

For illustration purposes, we simulate the
compressible three-dimensional temporal mix-
ing layer and use a convective Mach number
M = 0.2 and a Reynolds number based on
upper stream velocity and half the initial vor-
ticity thickness of 50. This is sufficiently high
to allow a mixing transition to small scales.
The governing equations are solved in a cu-
bic geometry of side L. Periodic boundary
conditions are imposed in the streamwise (z1)
and spanwise (z3) direction, while in the nor-
mal (z2) direction the boundaries are free-slip
walls. These settings correspond to the simu-
lation as reported in Vreman et al. (1997).

Visualization of the DNS data correspond-
ing to infinite Froude number demonstrates
the roll-up of the fundamental instability and
successive pairings (figure 1). As can be ob-
served, a highly three-dimensional flow field
arises around ¢t = 80, yielding a single roller
in which the flow exhibits a complex struc-
ture, with many regions of positive spanwise
vorticity. The dispersion of passive scalar cor-
responding to this field is considered next.

The initial condition for the scalar field is
chosen such that all ‘heavy’ fluid is located in
the upper half of the domain and the ‘light’
fluid is in the lower half. An example of the
evolution of a passive scalar field is shown in
figure 2 at a Schmidt number of Sc = 10. It
is clear that during transition the interface be-
tween the two regions rolls up and becomes
quite distorted. We also considered a higher
Schmidt number of Sc¢ = 100; the global fea-
tures of that simulation correspond to those
of figure 2 but many more small scale features
remain within the rollers, due to the smaller
influence of diffusion. This qualitative impres-
sion of increased complexity during transition,
will be further quantified in the next sections.

DNS AND LES OF MIXING OF PASSIVE
SCALARS

In this section we first turn to evaluating the
mixing efficiency 7 using DNS data. In particu-
lar we consider the dependence of 7 on Schmidt
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Figure 1: Development of spanwise vorticity in DNS of a
temporal mixing layer; from top to bottom ¢t = 20, t = 40
and t = 80.

number and investigate the role of the spatial
resolution. Subsequently we turn to LES pre-
dictions of the mixing efficiency and compare
predictions from different subgrid models at
different ratios of LES-filterwidth A and grid-
spacing h.

In figure 3 we have plotted the DNS-
prediction of the mixing efficiency for two
Schmidt numbers, at various resolutions. We
observe that an increase in the Schmidt num-
ber corresponds to a strong increase in mixing,
as was to be expected. Moreover, although not
quite fully resolved, a resolution in the range
of 963-128% appears to capture most of the
flow-features quantitatively correctly. Clearly,
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Figure 2: Evolution of passive scalar at Schmidt number
Sc = 10; from top to bottom; ¢t = 20, ¢ = 40 and ¢ = 80.
The initial condition consisted of a layer of level 1 on top of a
layer of level 0. The dashed line corresponds to ¢ = 0.5, solid
contours with ¢ = 0.3, 0.4 (generally below) and ¢ = 0.6, 0.7
(generally above).

the larger amount of small scale features that
remain at Sc 100 require a higher reso-
lution than needed for Sc¢c = 10. Changing
the Schmidt number from 10 to 100 results
in about a factor of 3 increase in 7. Since
the global features of the scalar field are not
changed significantly, this increase arises from
small scale contributions only.

The sensitive dependence of the mixing ef-
ficiency n on Schmidt number, i.e. on the
amount of small scales that emerge in the pas-
sive scalar field, will now be considered in the
LES context. For this purpose we follow a
traditional LES modeling of the Navier-Stokes
equations. The turbulent stress tensor 7;; =
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Figure 3: Evolution of surface of ¢ = 0.5 level set in DNS at
resolution 323 (solid), 64% (dashed), 963 (dash-dotted) and
1283 (dotted) at Sc = 10 (bottom set) and Sc = 100 (upper
set of curves).
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Figure 4: Evolution of surface of ¢ = 0.5 level set in
LES at resolution 323 (top) and 64% (bottom) using ini-
tial condition A and A = L/16; Smagorinsky model (solid),
Bardina model (dashed), Dynamic model (dash-dotted) and
Dynamic mixed model (dotted) at Sc¢ = 10. The results
without a subgrid model on 323 are shown by x and the
results at 962 by o.

Ujuj — U; u; which arises after spatial filter-
ing of the nonlinear convective fluxes requires
modeling. Here we compare four well-known
subgrid models: (a) Smagorinsky’s model with
coefficient equal to 0.1, (b) Bardina’s self-
similarity model, (c) the dynamic model and
(d) the dynamic mixed model combining Bar-
dina’s model with a dynamic eddy-viscosity
contribution (see Vreman et al., 1997 for fur-
ther details). We do not consider subgrid mod-
eling of the passive scalar equation. Instead,
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we focus here on the dispersion of the passive
scalar field due to convection in a smoothed ve-
locity field. Specifically, this implies that u; in
(5) is replaced by the Favre averaged velocity
field @; = pu;/p. The incorporation of subgrid
terms in the scalar equation will be considered
elsewhere.

In figure 4 we have plotted the LES-
predictions for the mixing efficiency. In all
these simulations we kept the LES-filterwidth
constant; A = L/16. Next to the specific sub-
grid model, the numerical treatment can play a
large role in LES. To investigate this in relation
to 1, we consider two different numerical set-
tings. In the first, we use a grid with 323 grid
cells, which implies that the LES-filterwidth
A is covered by two grid-cells, i.e. A/h = 2.
In the second case, we use 643 grid-cells and
consequently A/h = 4. The second case cor-
responds to reduced numerical discretization
errors, while the amount of detail that is re-
tained in the velocity field is the same for the
two settings. There is a considerable difference
in the predictions of 7 as can readily be in-
ferred by comparing the top and bottom plots
in figure 4. We notice that the use of Bardina’s
scale similarity model gives rise to an over pre-
diction of 7, in particular in combination with
insufficient subgrid resolution. Moreover, the
use of Smagorinsky’s model, even at a reduced
value of the coefficient of 0.1, is seen to lead
to too low values of n for small times, corre-
sponding to too much dissipation arising from
this subgrid model. The dynamic models per-
form roughly comparable, with a striking im-
provement in the long-term prediction of both
models in case sufficient subgrid resolution is
used. The dynamic mixed model appears to
give predictions for n which are closest to the
unfiltered DNS results.

MIXING ENHANCEMENT DUE TO
BUOYANCY

In the previous section we showed that the
determination of the surface area of the inter-
face which separates two regions of fluid, can
be used to quantify the increased complexity
of the flow-field, as a function of time or phys-
ical parameters. This concerned passive scalar
fields. In case gravity acts on the two fluids,
the specific spatial distribution determines the
buoyancy contributions to the evolution of the
momentum and energy. In this section we con-
sider the effects of unstable stratification on
the mixing efficiency 7.

The evolution of the active scalar field at



Figure 5: Evolution of active scalar at Schmidt number Sc =
10; from top to bottom; t = 20 and t = 40 and Froude-
number equal to 2. The solid line corresponds to ¢ = 0.5,
dashed contours with ¢ = 0.3, 0.4 and dash-dotted contours
with ¢ = 0.6, 0.7.

Fr = 2 is shown in figure 5. We use the same
Schmidt number as in figure 2. The global fea-
tures of the scalar field at ¢ = 20 can still be
compared well with the corresponding result
for passive scalars. However, in the further
development, we notice that the active scalar
develops a larger interface much more rapidly.
This difference is further illustrated in figure 6
where we compare the mixing efficiencies at
three different Froude numbers. We observe
that F'r = 5 provides mixing efficiencies which
differ about 30 percent from the passive scalar
case. Decreasing the Froude number to two
gives a large increase in the mixing-rate of
about a factor of three.

CONCLUDING REMARKS

We developed a new method for calculat-
ing the surface of arbitrary iso-surfaces. This
method was used to quantify the mixing that
arises during transitional and turbulent flow in
a temporal mixing layer. Accurate predictions
of the mixing efficiency can be obtained. More-
over, the dependence of mixing efficiency on
physical parameters can readily be quantified.

The amount of small-scale features in the
passive scalar field obviously plays a consid-
erable role in the mixing. Despite this, the
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Figure 6: Evolution of surface of ¢ = 0.5 level set at resolu-
tion 963: Fr = 2 (solid), Fr = 5 (dash-dotted) and F'r = oo
(dashed).
evolution of passive scalar fields due to con-
vection in a smoothed LES-velocity field, gives
rise to mixing efficiencies which compare well
with those arising from DNS. The use of tradi-
tional subgrid models for the turbulent stress
tensor appears sufficient. It was observed,
however, that the role of the numerical scheme
is quite pronounced and a ratio between LES-
filterwidth and grid-spacing of about four was
seen to considerably improve the predictions.
This will be further investigated in the future.
Finally, we applied the surface integration
method to determine the effect of buoyancy on
mixing efficiency. At sufficiently low Froude
numbers a strong increase in mixing efficiency
arises from an initially unstably stratified con-
figuration.
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